Лекарства

Понятие ковалентная связь. §2 Химическая связь. Сигма-связь и пи-связь

Ковалентная связь осуществляется за счёт обобществления электронов, принадлежащих обоим участвующим во взаимодействии атомам. Электроотрицательности неметаллов достаточно велики, поэтому передачи электронов не происходит.

Электроны, находящиеся на перекрывающихся электронных орбиталях, поступают в общее пользование. При этом создаётся ситуация, при которой внешние электронные уровни атомов оказываются заполненными, то есть образуется 8-ми или 2-х электронная внешняя оболочка.

Одноклассники

Состояние, при котором электронная оболочка заполнена полностью, характеризуется наименьшей энергией, а соответственно, и максимальной устойчивостью.

Механизмов образования два:

  1. донорно-акцепторный;
  2. обменный.

В первом случае один из атомов предоставляет свою пару электронов, а второй - свободную электронную орбиталь.

Во втором - в общую пару приходит по одному электрону от каждого участника взаимодействия.

В зависимости от того, к какому типу относятся - атомному или молекулярному, соединения с подобным видом связи могут значительно различаться по физико-химическим характеристикам.

Молекулярные вещества чаще всего газы, жидкость или твёрдые вещества с низкими температурами плавления и кипения, неэлектропроводные, обладающие малой прочностью. К ним можно отнести: водород (H 2), кислород (O 2), азот (N 2), хлор (Cl 2), бром (Br 2), ромбическую серу (S 8), белый фосфор (P 4) и другие простые вещества; диоксид углерода (CO 2), диоксид серы (SO 2), оксид азота V (N 2 O 5), воду (H 2 O), хлороводород (HCl), фтороводород (HF), аммиак (NH 3), метан (CH 4), этиловый спирт (C 2 H 5 OH), органические полимеры и другие.

Вещества атомные существуют в виде прочных кристаллов, имеющих высокие температуры кипения и плавления, не растворимы в воде и прочих растворителях, многие не проводят электрический ток. Как пример можно привести алмаз, который обладает исключительной прочностью. Это объясняется тем, что алмаз представляет собой кристалл, состоящий из атомов углерода, соединённых ковалентными связями. В алмазе нет отдельных молекул. Также атомным строением обладают такие вещества, как графит, кремний (Si), диоксид кремния (SiO 2), карбид кремния (SiC) и другие.

Ковалентные связи могут быть не только одинарными (как в молекуле хлора Cl2), но также двойные, как в молекуле кислорода О2, или тройные, как, например, в молекуле азота N2. При этом тройные имеют большую энергию и более прочны, чем двойные и одинарные.

Ковалентная связь может быть образована как между двумя атомами одного элемента (неполярная), так и между атомами различных химических элементов (полярная).

Указать формулу соединения с ковалентной полярной связью не представляет труда, если сравнить значения электроотрицательностей, входящих в состав молекул атомов. Отсутствие разницы в электроотрицательности определит неполярность. Если же разница есть, то молекула будет полярна.

Не пропустите: механизм образования , конкретные примеры.

Ковалентная неполярная химическая связь

Характерна для простых веществ неметаллов . Электроны принадлежат атомам в равной степени, и смещения электронной плотности не происходит.

Примером могут служить следующие молекулы:

H2, O2, О3, N2, F2, Cl2.

Исключением являются инертные газы . Их внешний энергетический уровень заполнен полностью, и образование молекул им энергетически не выгодно, в связи с чем они существуют в виде отдельных атомов.

Также примером веществ с неполярной ковалентной связью будет, например, РН3. Несмотря на то, что вещество состоит из различных элементов, значения электроотрицательностей элементов фактически не различаются, а значит, смещения электронной пары происходить не будет.

Ковалентная полярная химическая связь

Рассматривая ковалентную полярную связь, примеров можно привести множество: HCl, H2O, H2S, NH3, CH4, CO2, SO3, CCl4, SiO2, СО.

образуется между атомами неметаллов с различной электроотрицательностью. При этом ядро элемента с большей электроотрицательностью притягивает общие электроны ближе к себе.

Схема образования ковалентной полярной связи

В зависимости от механизма образования общими могут становиться электроны одного из атомов или обоих .

На картинке наглядно представлено взаимодействие в молекуле соляной кислоты.

Пара электронов принадлежит и одному атому, и второму, у обоих, таким образом, внешние уровни заполнены. Но более электроотрицательный хлор притягивает пару электронов чуть ближе к себе (при этом она остаётся общей). Разница в электроотрицательности недостаточно большая, чтобы пара электронов перешла к одному из атомов полностью. В результате возникает частичный отрицательный заряд у хлора и частичный положительный у водорода. Молекула HCl является полярной молекулой.

Физико-химические свойства связи

Связь можно охарактеризовать следующими свойствами : направленность, полярность, поляризуемость и насыщаемость.

Ковалентная связь — самый распространенный тип химической связи, осуществляемой при взаимодействии с одинаковыми или близкими значениями электроотрицательности.

Ковалентная связь — это связь атомов с помощью общих электронных пар.

После открытия электрона проводилось много попыток разработать электронную теорию химической связи. Наиболее удачными стали работы Льюиса (1916 г.), который предложил рассматривать образование связи как следствие возникновения общих для двух атомов электронных пар. Для этого каждый атом предоставляет одинаковое количество электронов и пытается окружить себя октетом или дублетом электронов, характерным для внешней электронной конфигурации инертных газов. Графически образования ковалентных связей за счет неспаренных электронов по методу Льюиса изображают с помощью точек, обозначающих внешние электроны атома.

Образование ковалентной связи согласно теории Льюиса

Механизм образования ковалентной связи

Основным признаком ковалентной связи является наличие общей электронной пары, принадлежащей обоим химически соединенным атомам, поскольку пребывание двух электронов в поле действия двух ядер энергетически выгоднее, чем нахождение каждого электрона в поле своего ядра. Возникновение общей электронной пары связи может проходить по разным механизмам, чаще — по обменному, а иногда — по донорно-акцепторных.

по принципу обменного механизма образования ковалентной связи каждый из взаимодействующих атомов поставляет на образование связи одинаковое количество электронов с антипараллельными спинами. К примеру:


Общая схема образования ковалентной связи: а) по обменному механизму; б) по донорно-акцепторному механизму

по донорно-акцепторному механизму двухэлектронная связь возникает при взаимодействии различных частиц. Одна из них — донор А: имеет неразделенную пару электронов (то есть такую, что принадлежит только одному атому), а другая — акцептор В — имеет вакантную орбиталь.

Частица, которая предоставляет для связи двухэлектронное (неразделенную пару электронов), называется донором, а частица со свободной орбиталью, которая принимает эту электронную пару, — акцептором.

Механизм образования ковалентной связи за счет двухэлектронного облака одного атома и вакантной орбитали другого называется донорно-акцепторным механизмом.

Донорно-акцепторный связь иначе называется семиполярной, поскольку на атоме-доноре возникает частичный эффективный положительный заряд δ+ (за счет того, что его неразделенная пара электронов отклонилась от него), а на атоме-акцепторе — частичный эффективный отрицательный заряд δ- (благодаря тому, что происходит смещение в его сторону неразделенной электронной пары донора).

В качестве примера простого донора электронной пары можно привести ион Н, который имеет неразделенную электронную пару. В результате присоединения негативного гидрид-иона к молекуле, центральный атом которой имеет свободную орбиталь (на схеме обозначена как пустая квантовая ячейка), например ВН 3 , образуется сложный комплексный ион ВН 4 с отрицательным зарядом (Н + ВН 3 ⟶⟶ [ВН 4 ] —) :

Акцептор электронной пары — ион водорода, или просто протон Н + . Его присоединение к молекуле, центральный атом которой имеет неразделенную электронную пару, например к NH 3 , тоже приводит к образованию комплексного иона NH 4 + , но уже с положительным зарядом:

Метод валентных связей

Первая квантово-механическая теория ковалентной связи была создана Гейтлером и Лондоном (в 1927 г.) для описания молекулы водорода, а затем была применена Полингом к многоатомным молекулам. Эта теория называется методом валентных связей , основные положения которого кратко можно изложить так:

  • каждая пара атомов в молекуле содержится вместе с помощью одной или нескольких общих электронных пар, при этом электронные орбитали взаимодействующих атомов перекрываются;
  • прочность связи зависит от степени перекрывания электронных орбиталей;
  • условием образования ковалентной связи является антинаправленность спинов электронов; благодаря этому возникает обобщенная электронная орбиталь с наибольшей электронной плотностью в межъядерном пространстве, которая обеспечивает притяжение положительно заряженных ядер друг к другу и сопровождается уменьшением общей энергии системы.

Гибридизация атомных орбиталей

Несмотря на то, что в образовании ковалентных связей участвуют электроны s-, p- или d-орбиталей, имеющие различные форму и различную ориентацию в пространстве, во многих соединениях эти связи оказываются равноценными. Для объяснения этого явления было введено понятие «гибридизация».

Гибридизация — это процесс смешивания и выравнивания орбиталей по форме и энергии, при котором происходит перераспределение электронных плотностей близких по энергии орбиталей, в результате чего они становятся равноценными.

Основные положения теории гибридизации:

  1. При гибридизации начальная форма и орбиталей взаимно меняются, при этом образуются новые, гибридизованные орбитали, но уже с одинаковой энергией и одинаковой формы, напоминающей неправильную восьмерку.
  2. Число гибридизованных орбиталей равно числу выходных орбиталей, участвующих в гибридизации.
  3. В гибридизации могут участвовать орбитали с близкими по значениям энергиями (s- и p-орбитали внешнего энергетического уровня и d-орбитали внешнего или предварительного уровней).
  4. Гибридизованные орбитали более вытянуты в направлении образования химических связей и поэтому обеспечивают лучшее перекрытие с орбиталями соседнего атома, вследствие этого становится более прочным, чем образованный за счет электронов отдельных негибридных орбиталей.
  5. Благодаря образованию более прочных связей и более симметричном распределения электронной плотности в молекуле получается энергетический выигрыш, который с запасом компенсирует расход энергии, необходимой для процесса гибридизации.
  6. Гибридизованные орбитали должны ориентироваться в пространстве таким образом, чтобы обеспечить взаимное максимальное отдаление друг от друга; в этом случае энергия отталкивания наименьшая.
  7. Тип гибридизации определяется типом и количеством выходных орбиталей и меняет размер валентного угла, а также пространственную конфигурацию молекул.

Форма гибридизованных орбиталей и валентных углы (геометрические углы между осями симметрии орбиталей) в зависимости от типа гибридизации: а) sp-гибридизация; б) sp 2 -гибридизация; в) sp 3 -гибридизация

При образовании молекул (или отдельных фрагментов молекул) чаще всего встречаются такие типы гибридизации:


Общая схема sp-гибридизации

Связи, которые образуются с участием электронов sp-гибридизованнных орбиталей, также размещаются под углом 180 0 , что приводит к линейной форме молекулы. Такой тип гибридизации наблюдается в галогенидах элементов второй группы (Be, Zn, Cd, Hg), атомы которых в валентном состоянии имеют неспаренные s- и р-электроны. Линейная форма характерна и для молекул других элементов (0=C=0,HC≡CH), в которых связи образуются sp-гибридизованными атомами.


Схема sp 2 -гибридизации атомных орбиталей и плоская треугольная форма молекулы, которая обусловлена sp 2 -гибридизацией атомных орбиталей

Этот тип гибридизации наиболее характерен для молекул р-элементов третьей группы, атомы которых в возбужденном состоянии имеют внешнюю электронную структуру ns 1 np 2 , где n — номер периода, в котором находится элемент. Так, в молекулах ВF 3 , BCl 3 , AlF 3 и в других связи образованы за счет sp 2 -гибридизованных орбиталей центрального атома.


Схема sp 3 -гибридизации атомных орбиталей

Размещение гибридизованных орбиталей центрального атома под углом 109 0 28` вызывает тетраэдрическую форму молекул. Это очень характерно для насыщенных соединений четырехвалентного углерода СН 4 , СCl 4 , C 2 H 6 и других алканов. Примерами соединений других элементов с тетраэдрической строением вследствие sp 3 -гибридизации валентных орбиталей центрального атома является ионы: BН 4 — , BF 4 — , PO 4 3- , SO 4 2- , FeCl 4 — .


Общая схема sp 3d -гибридизации

Этот тип гибридизации чаще всего встречается в галогенидах неметаллов. В качестве примера можно привести строение хлорида фосфора PCl 5 , при образовании которого атом фосфора (P … 3s 2 3p 3) сначала переходит в возбужденное состояние (P … 3s 1 3p 3 3d 1), а затем подвергается s 1 p 3 d- гибридизации — пять одноэлектронных орбиталей становятся равноценными и ориентируются вытянутыми концами к углам мысленной тригональной бипирамиды. Это и определяет форму молекулы PCl 5 , которая образуется при перекрытии пяти s 1 p 3 d- гибридизованных орбиталей с 3р-орбиталями пяти атомов хлора.

  1. sp — Гибридизация. При комбинации одной s- i одной р-орбиталей возникают две sp-гибридизованные орбитали, расположенные симметрично под углом 180 0 .
  2. sp 2 — Гибридизация. Комбинация одной s- и двух р-орбиталей приводит к образованию sp 2 -гибридизованных связей, расположенных под углом 120 0 , поэтому молекула приобретает форму правильного треугольника.
  3. sp 3 — Гибридизация. Комбинация четырех орбиталей — одной s- и трех р приводит к sp 3 — гибридизации, при которой четыре гибридизованные орбитали симметрично ориентированы в пространстве к четырем вершинам тетраэдра, то есть под углом 109 0 28 `.
  4. sp 3 d — Гибридизация. Комбинация одной s-, трех р- и одной d- орбиталей дает sp 3 d- гибридизацию, что определяет пространственную ориентацию пяти sp 3 d-гибридизованных орбиталей к вершинам тригональной бипирамиды.
  5. Другие типы гибридизации. В случае sp 3 d 2 -гибридизации шесть sp 3 d 2 -гибридизованных орбиталей направлены к вершинам октаэдра. Ориентация семи орбиталей к вершинам пентагональной бипирамиды соответствует sp 3 d 3 -гибридизации (или иногда sp 3 d 2 f) валентных орбиталей центрального атома молекулы или комплекса.

Метод гибридизации атомных орбиталей объясняет геометрическую структуру большого количества молекул, однако согласно опытным данным чаще наблюдаются молекулы с несколько другими значениями валентных углов. Например, в молекулах СН 4 , NH 3 и Н 2 О центральные атомы находятся в sp 3 -гибридизованном состоянии, поэтому можно было бы ожидать, что валентные углы в них равны тетраэдрическим (~ 109,5 0). Экспериментально установлено, что валентный угол в молекуле СН 4 на самом деле составляет 109,5 0 . Однако в молекулах NH 3 и Н 2 O значение валентного угла отклоняется от тетраэдрического: он равен 107,3 0 в молекуле NH 3 и 104,5 0 в молекуле Н 2 О. Такие отклонения объясняется наличием неразделенной электронной пары у атомов азота и кислорода. Двухэлектронная орбиталь, которая содержит неразделенную пару электронов, благодаря повышенной плотности отталкивает одноэлектронные валентные орбитали, что приводит к уменьшению валентного угла. У атома азота в молекуле NH 3 из четырех sp 3 -гибридизованных орбиталей три одноэлектронные орбитали образуют связи с тремя атомами Н, а на четвертой орбитали содержится неразделенная пара электронов.

Несвязанная электронная пара, которая занимает одну из sp 3 -гибридизованных орбиталей, направленных к вершинам тетраэдра, отталкивая одноэлектронные орбитали, вызывает асимметричное распределение электронной плотности, окружающей атом азота, и как следствие сжимает валентный угол до 107,3 0 . Аналогичная картина уменьшения валентного угла от 109,5 0 до 107 0 в результате воздействия неразделенной электронной пары атома N наблюдается и в молекуле NCl 3 .


Отклонение валентного угла от тетраэдрического (109,5 0) в молекуле: а) NН3 ; б) NCl3

У атома кислорода в молекуле Н 2 О на четыре sp 3 -гибридизованные орбитали приходится по две одноэлектронные и две двухэлектронные орбитали. Одноэлектронные гибридизованные орбитали участвуют в образовании двух связей с двумя атомами Н, а две двухэлектронные пары остаются неразделенными, то есть принадлежащими только атому H. Это увеличивает асимметричность распределения электронной плотности вокруг атома О и уменьшает валентный угол по сравнению с тетраэдрическим до 104.5 0 .

Следовательно, число несвязанных электронных пар центрального атома и их размещения на гибридизованных орбиталях влияет на геометрическую конфигурацию молекул.

Характеристики ковалентной связи

Ковалентная связь имеет набор определенных свойств, которые определяют ее специфические особенности, или характеристики. К ним, кроме уже рассмотренных характеристик «энергия связи» и «длина связи», относятся: валентный угол, насыщенность, направленность, полярность и тому подобное.

1. Валентный угол — это угол между соседними осями связей (то есть условными линиями, проведенными через ядра химически соединенных атомов в молекуле). Величина валентного угла зависит от природы орбиталей, типа гибридизации центрального атома, влияния неразделенных электронных пар, которые не участвуют в образовании связей.

2. Насыщенность . Атомы имеют возможности для образования ковалентных связей, которые могут формироваться, во-первых, по обменному механизму за счет неспаренных электронов невозбуждённого атома и за счет тех неспаренных электронов, которые возникают в результате его возбуждения, а во-вторых, по донорно акцепторному механизму. Однако общее количество связей, которые может образовывать атом, ограничено.

Насыщенность — это способность атома элемента образовывать с другими атомами определенное, ограниченное количество ковалентных связей.

Так, второго периода, которые имеют на внешнем энергетическом уровне четыре орбитали (одну s- и три р-), образуют связи, число которых не превышает четырех. Атомы элементов других периодов с большим числом орбиталей на внешнем уровне могут формировать больше связей.

3. Направленность . В соответствии с методом, химическая связь между атомами обусловлена перекрытием орбиталей, которые, за исключением s-орбиталей, имеют определенную ориентацию в пространстве, что и приводит к направленности ковалентной связи.

Направленность ковалентной связи — это такое размещение электронной плотности между атомами, которое определяется пространственной ориентацией валентных орбиталей и обеспечивает их максимальное перекрытие.

Поскольку электронные орбитали имеют различные формы и различную ориентацию в пространстве, то их взаимное перекрытие может реализоваться различными способами. В зависимости от этого различают σ-, π- и δ- связи.

Сигма-связь (σ-связь) — это такое перекрытие электронных орбиталей, при котором максимальная электронная плотность концентрируется вдоль воображаемой линии, соединяющей два ядра.

Сигма-связь может образовываться за счет двух s-электронов, одного s- и одного р электрона, двух р-электронов или двух d-электронов. Такая σ-связь характеризуется наличием одной области перекрытия электронных орбиталей, она всегда одинарная, то есть образуется только одной электронной парой.

Разнообразие форм пространственной ориентации «чистых» орбиталей и гибридизованных орбиталей не всегда допускают возможность перекрывания орбиталей на оси связи. Перекрывания валентных орбиталей может происходить по обе стороны от оси связи — так называемое «боковое» перекрывания, которое чаще всего осуществляется при образовании π-связей.

Пи-связь (π-связь) — это перекрытие электронных орбиталей, при котором максимальная электронная плотность концентрируется по обе стороны от линии, соединяющей ядра атомов (т.е. от оси связи).

Пи-связь может образоваться при взаимодействии двух параллельных р-орбиталей, двух d-орбиталей или других комбинаций орбиталей, оси которых не совпадают с осью связи.


Схемы образования π-связей между условными А и В атомами при боковом перекрытии электронных орбиталей

4. Кратность. Эта характеристика определяется числом общих электронных пар, связывающих атомы. Ковалентная связь по кратности может быть одинарной (простой), двойной и тройной. Связь между двумя атомами с помощью одной общей электронной пары называется одинарной связью (простой), двух электронных пар — двойной связью, трех электронных пар — тройной связью. Так, в молекуле водорода Н 2 атомы соединены одинарной связью (Н-Н), в молекуле кислорода О 2 — двойным (В = О), в молекуле азота N 2 — тройным (N≡N). Особое значение кратность связей приобретает в органических соединениях — углеводородах и их производных: в этане С 2 Н 6 между атомами С осуществляется одинарная связь (С-С), в этилене С 2 Н 4 — двойная (С = С) в ацетилене С 2 Н 2 — тройная (C ≡ C)(C≡C).

Кратность связи влияет на энергию: с повышением кратности растет ее прочность. Повышение кратности приводит к уменьшению межъядерного расстояния (длины связи) и увеличению энергии связи.


Кратность связи между атомами углерода: а) одинарная σ-связь в этане Н3С-СН3 ; б) двойная σ+π-связь в этилене Н2С = СН2 ; в) тройная σ+π+π-связь в ацетилене HC≡CH

5. Полярность и поляризуемость . Электронная плотность ковалентной связи может по-разному располагаться в межъядерном пространстве.

Полярность — это свойство ковалентной связи, которое определяется областью расположения электронной плотности в межъядерном пространстве относительно соединенных атомов.

В зависимости от размещения электронной плотности в межъядерном пространстве различают полярная и неполярная ковалентные связи. Неполярной связью называется такая связь, при которой общее электронное облако размещается симметрично относительно ядер соединенных атомов и одинаково принадлежит обоим атомам.

Молекулы с таким типом связи называются неполярными или гомоядерными (то есть такими, в состав которых входят атомы одного элемента). Неполярная связь проявляется как правило в гомоядерных молекулах (Н 2 , Cl 2 , N 2 и т.д.) или — реже — в соединениях, образованных атомами элементов с близкими значениями электроотрицательности, например, карборунд SiC. Полярной, (или гетерополярной) называется связь, при которой общее электронное облако несимметричное и смещено к одному из атомов.

Молекулы с полярной связью называются полярными, или гетероядерными. В молекулах с полярной связью обобщенная электронная пара смещается в сторону атома с большей электроотрицательностью. В результате на этом атоме возникает некоторый частичный отрицательный заряд (δ-), который называется эффективным, а у атома с меньшей электроотрицательностью — одинаковый по величине, но противоположный по знаку частичный положительный заряд (δ+). Например, экспериментально установлено, что эффективный заряд на атоме водорода в молекуле хлорида водорода HCl — δH=+0,17, а на атоме хлора δCl=-0,17 абсолютного заряда электрона.

Чтобы определить, в какую сторону будет смещаться электронная плотность полярной ковалентной связи, необходимо сравнить электроны обоих атомов. По возрастанию электроотрицательности наиболее распространенные химические элементы размещаются в такой последовательности:

Полярные молекулы называются диполями — системами, в которых центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают.

Диполь — это система, которая представляет собой совокупность двух точечных электрических зарядов, одинаковых по величине и противоположных по знаку, находящихся на некотором расстоянии друг от друга.

Расстояние между центрами притяжения называются длина диполя и обозначаются буквой l. Полярность молекулы (или связи) количественно характеризуется дипольным моментом μ, который в случае двухатомной молекулы равен произведению длины диполя на величину заряда электрона: μ=el.

В единицах СИ дипольный момент измеряется в [Кл × м] (Кулон-метры), но чаще пользуются внесистемной единицей [D] (дебай): 1D = 3,33 · 10 -30 Кл × м. Значение дипольных моментов ковалентных молекул меняется в пределах 0-4 D, а ионных — 4-11D. Чем больше длина диполя, тем более полярной является молекула.

Совместная электронное облако в молекуле может смещаться под действием внешнего электрического поля, в том числе и поля другой молекулы или иона.

Поляризуемость — это изменение полярности связи в результате смещения электронов, образующих связь, под действием внешнего электрического поля, в том числе и силового поля другой частицы.

Поляризуемость молекулы зависит от подвижности электронов, которая является тем сильнее, чем больше расстояние от ядер. Кроме того, поляризуемость зависит от направленности электрического поля и от способности электронных облаков деформироваться. Под действием внешнего поля неполярные молекулы становятся полярными, а полярные — еще более полярными, то есть в молекулах индуцируется диполь, который называется приведенным, или индуцированным диполем.


Схема образования индуцированного (приведенного) диполя из неполярной молекулы под действием силового поля полярной частицы — диполя

В отличие от постоянных, индуцированные диполи возникают лишь при действии внешнего электрического поля. Поляризация может вызывать не только поляризуемость связи, но и ее разрыв, при котором происходит переход связующего электронной пары к одному из атомов и образуются отрицательно и положительно заряженные ионы.

Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Свойства соединений с ковалентной связью

Вещества с ковалентными связями делятся на две неравные группы: молекулярные и атомные (или немолекулярные), которых значительно меньше, чем молекулярных.

Молекулярные соединения в обычных условиях могут находиться в различных агрегатных состояниях: в виде газов (CO 2 , NH 3 , CH 4 , Cl 2 , O 2 , NH 3), легколетучих жидкостей (Br 2 , H 2 O, C 2 H 5 OH) или твердых кристаллических веществ, большинство из которых даже при очень незначительном нагревании способны быстро плавиться и легко сублимироваться (S 8 , P 4 , I 2 , сахар С 12 Н 22 О 11 , «сухой лед» СО 2).

Низкие температуры плавления, возгонки и кипения молекулярных веществ объясняются очень слабыми силами межмолекулярного взаимодействия в кристаллах. Именно поэтому для молекулярных кристаллов не присуща большая прочность, твердость и электрическая проводимость (лед или сахар). При этом вещества с полярными молекулами имеют более высокие температуры плавления и кипения, чем с неполярными. Некоторые из них растворимы в или других полярных растворителях. А вещества с неполярными молекулами, наоборот, лучше растворяются в неполярных растворителях (бензол, тетрахлорметан). Так, йод, у которого молекулы неполярные, не растворяется в полярной воде, но растворяется в неполярной CCl 4 и малополярном спирте.

Немолекулярные (атомные) вещества с ковалентными связями (алмаз, графит, кремний Si, кварц SiO 2 , карборунд SiC и другие) образуют чрезвычайно прочные кристаллы, за исключением графита, которого имеет слоистую структуру. Например, кристаллическая решетка алмаза — правильный трехмерный каркас, в котором каждый sр 3 -гибридизованный атом углерода соединен с четырьмя соседними атомами С σ-связями. По сути весь кристалл алмаза — это одна огромная и очень прочная молекула. Аналогичное строение имеют и кристаллы кремния Si, который широко применяется в радиоэлектронике и электронной технике. Если заменить половину атомов С в алмазе атомами Si, не нарушая каркасную структуру кристалла, то получим кристалл карборунда — карбида кремния SiC — очень твердого вещества, используемого в качестве абразивного материала. А если в кристаллической решетке кремния между каждыми двумя атомами Si вставить по атому О, то образуется кристаллическая структура кварца SiO 2 — тоже очень твердого вещества, разновидность которого также используют как абразивный материал.

Кристаллы алмаза, кремния, кварца и подобные им по структуре — это атомные кристаллы, они представляют собой огромные «супермолекулы», поэтому их структурные формулы можно изобразить не полностью, а только в виде отдельного фрагмента, например:


Кристаллы алмаза, кремния, кварца

Немолекулярные (атомные) кристаллы, состоящие из соединенных между собой химическими связями атомов одного или двух элементов, относятся к тугоплавким веществам. Высокие температуры плавления обусловлены необходимостью затраты большого количества энергии для разрыва прочных химических связей при плавлении атомных кристаллов, а не слабого межмолекулярного взаимодействия, как в случае молекулярных веществ. По этой же причине многие атомные кристаллов при нагревании не плавятся, а разлагаются или сразу переходят в парообразное состояние (возгонка), например, графит сублимируется при 3700 o С.

Немолекулярные вещества с ковалентными связями нерастворимые в воде и других растворителях, большинство из них не проводит электрический ток (кроме графита, которому присуща электропроводность, и полупроводников — кремния, германия и др.).

При помощи химической связи атомы элементов в составе веществ удерживаются друг возле друга. Тип химической связи зависит от распределения в молекуле электронной плотности.

Химическая связь – взаимное сцепление атомов в молекуле и кристаллической решетке под воздействием электрических сил притяжения между атомами. Атом на внешнем энергетическом уровне способен содержать от одного до восьми электронов. Валентные электроны – электроны предвнешнего, внешнего электронных слоев, участвующие в химической связи. Валентность – свойство атомов элемента образовывать химическую связь.

Ковалентная связь образуется за счет общих электронных пар, возникающих на внешних и предвнешних подуровнях связываемых атомов.

Общая электронная пара осуществляется через обменный или донорно-акцепторный механизм. Обменный механизм образования ковалентной связи – спаривание двух неспа-ренных электронов, принадлежащих различным атомам. Донорно-акцепторный механизм образования ковалетной связи – образование связи за счет пары электронов одного атома (донора) и вакантной орбитали другого атома (акцептора).

Есть две основные разновидности ковалентной связи: неполярная и полярная.

Ковалентная неполярная связь возникает между атомами неметалла одного химического элемента (O2, N2, Cl2) – электронное облако связи, образованное общей парой электронов, распределяется в пространстве симметрично по отношению к ядрам обоих атомов.

Ковалентная полярная связь возникает между атомами различных неметаллов (HCl, CO2, N2O) – электронное облако связи смещается к атому с большей электроотрицательностью.

Чем сильнее перекрываются электронные облака, тем прочнее ковалентная связь.

Электроотрицательность – способность атомов химического элемента оттягивать к себе общие электронные пары, участвующие в образовании химической связи.

Длина связи – расстояние между ядрами атомов, образующих связь.

Энергия связи – количество энергии, необходимое для разрыва связи.

Насыщаемость – способность атомов образовывать определенное число ковалентных связей.

Направленность ковалентной связи – параметр, определяющий пространственную структуру молекул, их геометрию, форму.

Гибридизация – выравнивание орбиталей по форме и энергии. Существует несколько форм перекрывания электронных облаков с образованием?-связей и?-связей (?-связь намного прочнее?-связи, ?-связь может быть только с?-связью).

10. Многоцентровые связи

В процессе развития метода валентных связей выяснилось, что настоящие свойства молекулы оказываются промежуточными между теми, которые описывает соответствующая формула. Такие молекулы описывают набором из нескольких валентных схем (метод наложения валентных схем) . В качестве примера рассматривается молекула метана СН4. В ней отдельные молекулярные орбитали взаимодействуют друг с другом. Это явление называется локализованной многоцентровой ковалентной связью. Эти взаимодействия слабые, поскольку степень перекрывания орбиталей невелика. Но молекулы с многократно перекрывающимися атомными орбиталями, ответственными за образование связей путем обобществления электронов тремя и более атомами, существуют (дибо-ран В2Н6). В этом соединении центральные атомы водорода соединены трехцентровыми связями, образовавшимися в результате перекрывания sp3-гибридных орбиталей двух атомов бора с 1s-атомной орбиталью атома водорода.

С точки зрения метода молекулярных орбиталей считается, что каждый электрон находится в поле всех ядер, но связь не обязательно образована парой электронов (Н2+ – 2 протона и 1 электрон).

Метод молекулярных орбиталей использует представление о молекулярной орбитали, описывая распределение электронной плотности в молекуле.

Молекулярные орбитали – волновые функции электрона в молекуле или другой многоатомной химической частице. Молекулярная орбиталь (МО) занята одним или двумя электронами. В области связывания состояние электрона описывает связывающая молекулярная орбиталь, в области разрыхления – разрыхляющая молекулярная орбиталь. Распределение электронов по молекулярным орбиталям происходит так же как и распределение электронов по атомным орбиталям в изолированном атоме. Молекулярные орбитали формируются при комбинациях атомных орбиталей. Их число, энергия и форма выводятся исходя из числа, энергии и формы орбиталей атомов – элементов молекулы.

Волновые функции, отвечающие молекулярным орбиталям в двухатомной молекуле, представляют в виде суммы и разности волновых функций, атомных орбиталей, умноженных на постоянные коэффициенты: ?(АВ) = c1?(A)±c2?(B). Это метод вычисления одноэлектронной волновой функции (молекулярные орбитали в приближении линейной комбинации атомных орбиталей).

Энергии связывающих орбиталей ниже энергии атомных орбиталей. Электроны связывающих молекулярных орбиталей находятся в пространстве между связываемыми атомами.

Энергии разрыхляющих орбиталей выше энергии исходных атомных орбиталей. Заселение разрыхляющих молекулярных орбиталей электронами ослабляет связь.

Химической связью называют взаимодействие частиц (ионов или атомов), которое осуществляется в процессе обмена электронами, находящимися на последнем электронном уровне. Существует несколько видов такой связи: ковалентная (она делится на неполярную и полярную) и ионная. В этой статье мы подробнее остановимся именно на первом виде химических связей - ковалентных. А если быть точнее, то на полярном ее виде.

Ковалентная полярная связь - это химическая связь между валентными электронными облаками соседних атомов. Приставка «ко-» - означает в данном случае «совместно», а основа «валента» переводится как сила или способность. Те два электрона, которые связываются между собой, называют электронной парой.

История

Впервые этот термин употребил в научном контексте лауреат Нобелевской премии химик Ирвинг Леннгрюм. Произошло это в 1919 году. В своей работе ученый объяснял, что связь, в которой наблюдаются общие для двух атомов электроны, отличается от металлической или ионной. А значит, требует отдельного названия.

Позже, уже в 1927 году, Ф. Лондон и В. Гайтлер, взяв в качестве примера молекулу водорода как химически и физически наиболее простую модель, описали ковалентную связь. Они взялись за дело с другого конца, и свои наблюдения обосновывали, используя квантовую механику.

Суть реакции

Процесс преобразования атомарного водорода в молекулярный является типичной химической реакцией, качественным признаком которой служит большое выделение теплоты при объединении двух электронов. Выглядит это примерно так: два атома гелия приближаются друг к другу, имея по одному электрону на своей орбите. Затем эти два облака сближаются и образуют новое, похожее на оболочку гелия, в котором вращаются уже два электрона.

Завершенные электронные оболочки устойчивее, чем незавершенные, поэтому их энергия существенно ниже, чем у двух отдельных атомов. При образовании молекулы излишек тепла рассеивается в окружающей среде.

Классификация

В химии выделяют два вида ковалентной связи:

  1. Ковалентная неполярная связь, образующаяся между двумя атомами одного неметаллического элемента, например кислород, водород, азот, углерод.
  2. Ковалентная полярная связь, возникает между атомами разных неметаллов. Хорошим примером может служить молекула хлороводорода. Когда атомы двух элементов соединяются друг с другом, то неспаренный электрон от водорода частично переходит на последний электронный уровень атома хлора. Таким образом, на атоме водорода образуется положительный заряд, а на атоме хлора - отрицательный.

Донорно-акцепторная связь также является видом ковалентной связи. Она заключается в том, что один атом из пары предоставляет оба электрона, становясь донором, а принимающий их атом, соответственно, считается акцептором. При образовании связи между атомами, заряд донора увеличивает на единицу, а заряд акцептора снижается.

Семиполярная связь - е е можно считать подвидом донорно-акцепторной. Только в этом случае объединяются атомы, один из которых имеет законченную электронную орбиталь (галогены, фосфор, азот), а второй - два неспаренных электрона (кислород). Образование связи проходит в два этапа:

  • сначала от неподеленной пары отрывает один электрон и присоединяется к неспаренным;
  • объединение оставшихся неспаренных электродов, то есть формируется ковалентная полярная связь.

Свойства

Полярная ковалентная связь имеет свои физико-химические свойства, такие как направленность, насыщаемость, полярность, поляризуемость. Именно они определяют характеристики образующихся молекул.

Направленность связи зависит от будущего молекулярного строения образующегося вещества, а именно от геометрической формы, которую формируют два атома при присоединении.

Насыщаемость показывает, сколько ковалентных связей способен образовать один атом вещества. Это число ограничено количеством внешних атомных орбиталей.

Полярность молекулы возникает потому, что электронное облако, образующееся из двух разных электронов, неравномерно по всей своей окружности. Это возникает из-за разницы отрицательного заряда в каждом из них. Именно это свойство и определяет, полярная связь или неполярная. Когда объединяются два атома одного элемента, электронное облако симметрично, значит, связь ковалентная неполярная. А если объединяются атомы разных элементов, то формируется асимметричное электронное облако, так называемый дипольный момент молекулы.

Поляризуемость отражает то, насколько активно электроны в молекуле смещаются под действием внешних физических или химических агентов, например электрического или магнитного поля, других частиц.

Два последних свойства образующейся молекулы определяют ее способность реагировать с другими полярными реагентами.

Сигма-связь и пи-связь

Формирование этих связей зависит от плотности распределения электронов в электронном облаке в процессе формирования молекулы.

Для сигма-связи характерно наличие плотного скопления электронов вдоль оси, соединяющей ядра атомов, то есть в горизонтальной плоскости.

Пи-связь характеризуется уплотнение электронных облаков в месте их пересечения, то есть над и под ядром атома.

Визуализация связи в записи формулы

Для примера можем взять атом хлора. На ее внешнем электронном уровне содержится семь электронов. В формуле их располагают тремя парами и одним неспаренным электроном вокруг обозначения элемента в виде точек.

Если таким же образом записывать молекулу хлора, то будет видно, что два неспаренных электрона образовали пару, общую для двух атомов, она называется поделенной. При этом каждый из них получил по восемь электронов.

Правило октета-дублета

Химик Льюис, который предположил, как образуется ковалентная полярная связь, первым из своих коллег сформулировал правило, объясняющее устойчивость атомов при их объединении в молекулы. Суть его заключается в том, что химические связи между атомами образуются в том случае, когда обобществляется достаточное количество электронов, чтобы получилась электронная конфигурация, повторяющая подобная атомам благородных элементов.

То есть при образовании молекул для их стабилизации необходимо, чтобы все атомы имели законченный внешний электронный уровень. Например, атомы водорода, объединяясь в молекулу, повторяют электронную оболочку гелия, атомы хлора, приобретают схожесть на электронном уровне с атомом аргона.

Длина связи

Ковалентная полярная связь, кроме всего прочего, характеризуется определенным расстоянием между ядрами атомов, образующих молекулу. Они находятся на таком расстоянии друг от друга, при котором энергия молекулы минимальна. Для того чтобы этого достичь, необходимо, чтобы электронные облака атомов максимально перекрывали друг друга. Существует прямо пропорциональная закономерность между размером атомов и длинной связи. Чем больше атом, тем длиннее связь между ядрами.

Возможен вариант, когда атом образует не одну, а несколько ковалентных полярных связей. Тогда между ядрами формируются так называемые валентные углы. Они могут быть от девяноста до ста восьмидесяти градусов. Они и определяют геометрическую формулу молекулы.

7.11. Строение веществ с ковалентной связью

Вещества, в которых из всех типов химической связи присутствует только ковалентная, делятся на две неравные группы: молекулярные (очень много) и немолекулярные (значительно меньше).
Кристаллы твердых молекулярных веществ состоят из слабо связанных между собой силами межмолекулярного взаимодействия молекул. Такие кристаллы не обладают высокой прочностью и твердостью (вспомните лед или сахар). Невысоки у них также температуры плавления и кипения (см. таблицу 22).

Таблица 22. Температуры плавления и кипения некоторых молекулярных веществ

Вещество

Вещество

H 2 – 259 – 253 Br 2 – 7 58
N 2 – 210 – 196 H 2 O 0 100
HCl – 112 – 85 P 4 44 257
NH 3 – 78 – 33 C 10 H 8 (нафталин) 80 218
SO 2 – 75 – 10 S 8 119

В отличие от своих молекулярных собратьев немолекулярные вещества с ковалентной связью образуют очень твердые кристаллы. Кристаллы алмаза (самого твердого вещества) относятся именно к этому типу.
В кристалле алмаза (рис. 7.5) каждый атом углерода связан с четырьмя другими атомами углерода простыми ковалентными связями (sр 3 -гибридизация). Атомы углерода образуют трехмерный каркас. По существу весь кристалл алмаза представляет собой одну огромную и очень прочную молекулу.
Такое же строение имеют и кристаллы кремния, широко применяемые в радиоэлектронике и электронной технике.
Если заменить половину атомов углерода в алмазе на атомы кремния, не нарушая каркасную структуру кристалла, то получится кристалл карбида кремния SiC – также очень твердого вещества, используемого как абразивный материал. Обычный кварцевый песок (диоксид кремния) тоже относится к этому типу кристаллических веществ. Кварц – очень твердое вещество; под названием " наждак" он также используется как абразивный материал. Структуру кварца легко получить, если в кристалле кремния между каждыми двумя атомами кремния вставит атомы кислорода. При этом каждый атом кремния окажется связанным с четырьмя атомами кислорода, а каждый атом кислорода – с двумя атомами кремния.

Кристаллы алмаза, кремния, кварца и подобные им по структуре называют атомными кристаллами.
Атомный кристалл – кристалл, состоящий из атомов одного или нескольких элементов, связанных химическими связями.
Химическая связь в атомном кристалле может быть ковалентной или металлической.
Как вы уже знаете, любой атомный кристалл, как и ионный, представляет собой огромную " супермолекулу" . Структурную формулу такой " супермолекулы" записать нельзя – можно только показать ее фрагмент, например:

В отличие от молекулярных веществ, вещества, образующие атомные кристаллы, – одни из самых тугоплавких (см. таблицу 23.).

Таблица 23. Температуры плавления и кипения некоторых немолекулярных веществ с ковалентными связями

Такие высокие температуры плавления вполне понятны, если вспомнить, что при плавлении этих веществ рвутся не слабые межмолекулярные, а прочные химические связи. По этой же причине многие вещества, образующие атомные кристаллы, при нагревании не плавятся, а разлагаются или сразу переходят в парообразное состояние (возгоняются), например, графит возгоняется при 3700 o С.

Кремний – Si. Очень твердые, хрупкие кристаллы кремния по виду похожи на металлические, тем не менее он – неметалл. По типу электропроводности это вещество относится к полупроводникам, что и определяет его громадное значение в современном мире. Кремний – важнейший полупроводниковый материал. Радиоприемники, телевизоры, компьютеры, современные телефоны, электронные часы, солнечные батареи и многие другие бытовые и промышленные приборы содержат в качестве важнейших элементов конструкции транзисторы, микросхемы и фотоэлементы, изготовленные из монокристаллов особочистого кремния. Технический кремний используется в производстве сталей и в цветной металлургии. По химическим свойствам кремний – довольно инертное вещество, вступает в реакции только при высокой температуре

Диоксид кремния – SiO 2 . Другое название этого вещества – кремнезем. Диоксид кремния встречается в природе в двух видах: кристаллическом и аморфном. Многие полудрагоценные и поделочные камни являются разновидностями кристаллического диоксида кремния (кварца): горный хрусталь, яшма, халцедон, агат. а опал – аморфная форма кремнезема. Кварц очень широко распространен в природе, ведь и барханы в пустынях, и песчаные отмели рек и морей – все это кварцевый песок. Кварц – бесцветное кристаллическое очень твердое и тугоплавкое вещество. По твердости он уступает алмазу и корунду, но, тем не менее, широко используется как абразивный материал. Кварцевый песок широко применяется в строительстве и промышленности стройматериалов. Кварцевое стекло используется для изготовления лабораторной посуды и научных приборов, так как оно не растрескивается при резком изменении температуры. По своим химическим свойствам диоксид кремния – кислотный оксид, но со щелочами реагирует только при сплавлении. При высоких температурах из диоксида кремния и графита получают карбид кремния – карборунд. Карборунд – второе по твердости после алмаза вещество, его тоже используют для изготовления шлифовальных кругов и " наждачной" бумаги.

7.12. Полярность ковалентной связи. Электроотрицательность

Вспомним, что изолированные атомы разных элементов имеют разную склонность как отдавать, так и принимать электроны. Эти различия сохраняется и после образования ковалентной связи. То есть, атомы одних элементов стремятся притянуть к себе электронную пару ковалентной связи сильнее, чем атомы других элементов.

Рассмотрим молекулу HCl.
На этом примере посмотрим, как можно оценить смещение электронного облака связи, используя молярные энергии ионизации и средства к электрону. 1312 кДж/моль, а 1251 кДж/моль – различие незначительно, примерно 5%. 73 кДж/моль, а 349 кДж/моль – здесь различие куда больше: энергия сродства к электрону атома хлора почти в пять раз больше таковой для атома водорода. Отсюда можно сделать вывод, что электронная пара ковалентной связи в молекуле хлороводорода в значительной степени смещена в сторону атома хлора. Иными словами, электроны связи больше времени проводят вблизи атома хлора, чем вблизи атома водорода. Такая неравномерность распределения электронной плотности приводит к перераспределению электрических зарядов внутри молекулы.На атомах возникают частичные (избыточные) заряды; на атоме водорода – положительный, а на атоме хлора – отрицательный.

В этом случае говорят, что связь поляризуется, а сама связь называется полярной ковалентной связью.
Если же электронная пара ковалентной связи не смещена ни к какому из связываемых атомов, то есть, электроны связи в равной степени принадлежат связываемым атомам, то такая связь называется неполярной ковалентной связью.
Понятие " формальный заряд" в случае ковалентной связи также применимо. Только в определении речь должна идти не об ионах, а об атомах. В общем случае может быть дано следующее определение.

В молекулах, ковалентные связи в которых образовались только по обменному механизму, формальные заряды атомов равны нулю. Так, в молекуле HCl формальные заряды на атомах как хлора, так и водорода равны нулю. Следовательно, в этой молекуле реальные (эффективные) заряды на атомах хлора и водорода равны частичным (избыточным) зарядам.
Далеко не всегда по молярным энергиям ионизации и сродства к электрод легко определить знак частичного заряда на атоме того или другого элемента в молекуле, то есть оценить, в какую сторону смещены электронные пары связей. Обычно для этих целей используют еще одну энергетическую характеристику атома – электроотрицательность.

В настоящее время единого, общепринятого обозначения для электроотрицательности нет. Можно обозначать ее буквами Э/О. Также пока нет и единого, общепринятого метода расчета электроотрицательности. Упрощенно ее можно представить как полусумму молярных энергий ионизации и сродства к электрону – таким и был один из первых способов ее расчета.
Абсолютные значения электроотрицательностей атомов различных элементов используются очень редко. Чаще используют относительную электроотрицательность, обозначаемую буквой c . Первоначально эта величина определялась как отношение электроотрицательности атома данного элемента к электроотрицательности атома лития. В дальнейшем методы ее расчета несколько изменились.
Относительная электроотрицательность – величина безразмерная. Ее значения приведены в приложении 10.

Так как относительная электроотрицательность зависит прежде всего от энергии ионизации атома (энергия сродства к электрону всегда намного меньше), то в системе химических элементов она изменяется примерно также, как и энергия ионизации, то есть возрастает по диагонали от цезия (0,86) ко фтору (4,10). Приведенные в таблице значения относительной электроотрицательности гелия и неона не имеют практического значения, так как эти элементы не образуют соединений.

Используя таблицу электроотрицательности, можно легко определить в сторону какого из двух атомов смещены электроны, связывающие эти атомы, и, следовательно, знаки частичных зарядов, возникающих на этих атомах.

H 2 O Связь полярная
H 2 Атомы одинаковые H--H Связь неполярная
CO 2 Связь полярная
Cl 2 Атомы одинаковые Cl--Cl Связь неполярная
H 2 S Связь полярная

Таким образом, в случае образования ковалентной связи между атомами разных элементов такая связь всегда будет полярной, а в случае образования ковалентной связи между атомами одного элемента (в простых веществах) связь в большинстве случаев неполярна.

Чем больше разность электроотрицательностей связываемых атомов, тем более полярной оказывается ковалентная связь между этими атомами.

Сероводород H 2 S – бесцветный газ с характерным запахом, присущим тухлым яйцам; ядовит. Он термически неустойчив, при нагревании разлагается. Сероводород мало растворим в воде, его водный раствор называют сероводородной кислотой. Сероводород провоцирует (катализирует) коррозию металлов, именно этот газ " повинен" в потемнении серебра.
В природе он содержится в некоторых минеральных водах. В процессе жизнедеятельности его образуют некоторые бактерии. Сероводород губителен для всего живого. Сероводородный слой обнаружен в глубинах Черного моря и внушает опасения ученым: жизнь морских обитателей там находится под постоянной угрозой.

ПОЛЯРНАЯ КОВАЛЕНТНАЯ СВЯЗЬ,НЕПОЛЯРНАЯ КОВАЛЕНТНАЯ СВЯЗЬ, АБСОЛЮТНАЯ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ, ОТНОСИТЕЛЬНАЯ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ.
1.Эксперименты и последующие расчеты показали, что эффективный заряд кремния в тетрафториде кремния равен +1,64 е, а ксенона в гексафториде ксенона +2,3 е. Определите значения частичных зарядов на атомах фтора в этих соединениях. 2. Составьте структурные формулы следующих веществ и, используя обозначения " " и " " , охарактеризуйте полярность ковалентных связей в молекулах этих соединений: а) CH 4 , CCl 4 , SiCl 4 ; б) H 2 O, H 2 S, H 2 Se, H 2 Te; в) NH 3 , NF 3 , NCl 3 ; г) SO 2 , Cl 2 O, OF 2 .
3.Пользуясь таблицей электроотрицательностей, укажите, в каком из соединений связь более полярна: а) CCl 4 или SiCl 4 ; б) H 2 S или H 2 O; в) NF 3 или NCl 3 ; г) Cl 2 O или OF 2 .

7.13. Донорно-акцепторный механизм образования связи

В предыдущих параграфах вы подробно познакомились с двумя типами связи: ионной и ковалентной. Вспомним, что ионная связь образуется при полной передаче электрона от одного атома другому. Ковалентная – при обобществлении неспаренных электронов связываемых атомов.

Кроме этого, существует еще один механизм образования связи. Рассмотрим его на примере взаимодействия молекулы аммиака с молекулой трифторида бора:

В результате между атомами азота и бора возникает и ковалентная, и ионная связь. При этом атом азота является донором электронной пары (" дает" ее для образования связи), а атом бора – акцептором (" принимает" ее при образовании связи). Отсюда и название механизма образования такой связи – " донорно-акцепторный" .

При образовании связи по донорно-акцепторному механизму образуются одновременно и ковалентная связь, и ионная.
Конечно, после образования связи за счет разницы в электроотрицательности связываемых атомов происходит поляризация связи, возникают частичные заряды, снижающие эффективные (реальные) заряды атомов.

Рассмотрим другие примеры.

Если рядом с молекулой аммиака окажется сильно полярная молекула хлороводорода, в которой на атоме водорода имеется значительный частичный заряд , то в этом случае роль акцептора электронной пары будет выполнять атом водорода. Его 1s -АО хоть и не совсем пустая, как у атома бора в предыдущем примере, но электронная плотность в облаке этой орбитали существенно понижена.

Пространственное строение получившегося катиона, иона аммония NH 4 , подобно строению молекулы метана, то есть все четыре связи N-H совершенно одинаковы.
Образование ионных кристаллов хлорида аммония NH 4 Cl можно наблюдать, смешав газообразный аммиак с газообразным хлороводородом:

NH 3(г) + HCl (г) = NH 4 Cl (кр)

Донором электронной пары может быть не только атом азота. Им может быть, например, атом кислорода молекулы воды. С тем же хлороводородом молекула воды будет взаимодействовать следующим образом:

Образующийся катион H 3 O называется ионом оксония и, как вы скоро узнаете, имеет огромное значение в химии.
В заключение рассмотрим электронное строение молекулы угарного газа (монооксида углерода) СО:

В ней, кроме трех ковалентных связей (тройной связи), есть еще и ионная связь.
Условия образования связи по донорно-акцепторному механизму:
1) наличие у одного из атомов неподеленной пары валентных электронов;
2) наличие у другого атома свободной орбитали на валентном подуровне.
Донорно-акцепторный механизм образования связи распространен довольно широко. Особенно часто он встречается при образовании соединений d -элементов. Атомы почти всех d -элементов имеют много свободных валентных орбиталей. Поэтому они являются активными акцепторами электронных пар.

ДОНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ СВЯЗИ, ИОН АММОНИЯ, ИОН ОКСОНИЯ, УСЛОВИЯ ОБРАЗОВАНИЯ СВЯЗИ ПО ДОНОРНО-АКЦЕПТОРНОМУ МЕХАНИЗМУ.
1.Составьте уравнения реакций и схемы образования
а) бромида аммония NH 4 Br из аммиака и бромоводорода;
б) сульфата аммония (NH 4) 2 SO 4 из аммиака и серной кислоты.
2.Составьте уравнения реакций и схемы взаимодействия а) воды с бромоводородом; б) воды с серной кислотой.
3.Какие атомы в четырех предыдущих реакциях являются донорами электронной пары, а какие акцепторами? Почему? Ответ поясните диаграммами валентных подуровней.
4.Структурная формула азотной кислоты Углы между связями O– N– O близки к 120 o . Определите:
а) тип гибридизации атома азота;
б) какая АО атома азота принимает участие в образовании -связи;
в) какая АО атома азота принимает участие в образовании -связи по донорно-акцепторному механизму.
Как вы думаете, чему примерно равен угол между связями H– O– N в этой молекуле? 5.Составьте структурную формулу цианид-иона CN (отрицательный заряд – на атоме углерода). Известно, что цианиды (соединения, содержащие такой ион) и угарный газ СО – сильные яды, и биологическое действие их очень близко. Предложите свое объяснение близости их биологического действия.

7.14. Металлическая связь. Металлы

Ковалентная связь образуется между атомами, близкими по склонности к отдаче и присоединению электронов, только тогда, когда размеры связываемых атомов невелики. В этом случае электронная плотность в области перекрывания электронных облаков значительна, и атомы оказываются прочно связанными, как, например, в молекуле HF. Если хотя бы один из связываемых атомов имеет большой радиус, образование ковалентной связи становится менее выгодным, так как электронная плотность в области перекрывания электронных облаков у больших атомов значительно меньше, чем у маленьких. Пример такой молекулы с менее прочной связью – молекула HI (пользуясь таблицей 21, сравните энергии атомизации молекул HF и HI).

И все-таки между большими атомами (r o > 1,1) возникает химическая связь, но в этом случае она образуется за счет обобществления всех (или части) валентных электронов всех связываемых атомов. Например, в случае атомов натрия обобществляются все 3s -электроны этих атомов, при этом образуется единое электронное облако:

Атомы образуют кристалл с металлической связью.
Так могут связываться между собой как атомы одного элемента, так и атомы разных элементов. В первом случае образуются простые вещества, называемые металлами , а во втором – сложные вещества, называемые интерметаллическими соединениями .

Из всех веществ с металлической связью между атомами в школе вы будете издать только металлы. Каково же пространственное строение металлов? Металлический кристалл состоит из атомных остовов , оставшихся после обобществления валентных электронов, и электронного облака обобществленных электронов. Атомные остовы обычно образуют плотнейшую упаковку, а электронное облако занимает весь оставшийся свободным объем кристалла.

Основными видами плотнейших упаковок являются кубическая плотнейшая упаковка (КПУ) и гексагональная плотнейшая упаковка (ГПУ). Названия этих упаковок связаны с симметрией кристаллов, в которых они реализуются. Некоторые металлы образуют кристаллы с неплотнейшей упаковкой – объемноцентрированной кубической (ОЦК). Объемные и шаростержневые модели этих упаковок показаны на рисунке 7.6.
Кубическую плотнейшую упаковку образуют атомы Cu, Al, Pb, Au и некоторых других элементов. Гексагональную плотнейшую упаковку – атомы Be, Zn, Cd, Sc и ряд других. Объемноцентрированная кубическая упаковка атомов присутствует в кристаллах щелочных металлов, элементов VB и VIB групп. Некоторые металлы при разных температурах могут иметь разную структуру. Причины таких отличий и особенностей строения металлов до сих пор до конца не выяснены.
При плавлении металлические кристаллы превращаются в металлические жидкости . Тип химической связи между атомами при этом не изменяется.
Металлическая связь не обладает направленностью и насыщаемостью. В этом отношении она похожа на ионную связь.
В случае интерметаллических соединений можно говорить и о поляризуемости металлической связи.
Характерные физические свойства металлов:
1) высокая электропроводность;
2) высокая теплопроводность;
3) высокая пластичность.

Температуры плавления разных металлов очень сильно отличаются друг от друга: наименьшая температура плавления у ртути (- 39 o С), а наибольшая - у вольфрама (3410 o С).

Бериллий Be - светло-серый легкий достаточно твердый, но обычно хрупкий металл. Температура плавления 1287 o С. На воздухе он покрывается оксидной пленкой. Бериллий - достаточно редкий металл, живые организмы в процессе своей эволюции практически не контактировали с ним, поэтому и неудивительно, что он ядовит для животного мира. Применяется он в ядерной технике.

Цинк Zn - белый с голубоватым оттенком мягкий металл. Температура плавления 420 o С. На воздухе и в воде покрывается тонкой плотной пленкой оксида цинка, препятствующей дальнейшему окислению. В производстве используется для оцинковки листов, труб, проволоки, защищая железо от коррозии.
Цинк входит в состав многих сплавов, например, мельхиора и нейзильбера; из его сплавов чеканят монеты. Цинк - составная часть латуней, широко используемых в машиностроении. Сплавы, содержащие цинк, применяют для отливки типографских шрифтов.

Вольфрам W. Это самый тугоплавкий из всех металлов: температура плавления вольфрама 3387 o С. Обычно вольфрам довольно хрупкий, но после тщательной очистки становится пластичным, что позволяет вытягивать из него тонкую проволоку, из которой делают нити электрических лампочек. Однако большая часть получаемого вольфрама идет на производство твердых и износостойких сплавов, способных сохранять эти свойства при нагревании даже до 1000 o С.

МЕТАЛЛ, ИНТЕРМЕТАЛЛИЧЕСКОЕ СОЕДИНЕНИЕ, МЕТАЛЛИЧЕСКАЯ СВЯЗЬ, ПЛОТНЕЙШАЯ УПАКОВКА.
1.Для характеристики различных упаковок используется понятие " коэффициент заполнения пространства" , то есть отношение объема атомов к объему кристалла

где V a - объем атома,
Z - число атомов в элементарной ячейке,
V я - объём элементарной ячейки.
Атомы в этом случае представляются жесткими шарами радиуса R , соприкасающимися друг с другом. Объем шара V ш = (4/3)R 3 .
Определяйте коэффициент заполнения пространства для КПУ и ОЦК упаковки.
2.Используя значения металлических радиусов (приложение 9), рассчитайте размер элементарной ячейки а) меди (КПУ), б) алюминия (КПУ) и в) цезия (ОЦК).