Здоровье

Опыт штерна и герлаха. Штерна опыт Опыт штерна средняя скорость молекул

Понимание того, что в основе строения любого вещества лежит существование мельчайших частиц - атомов и молекул, находящихся в непрерывном движении и активном взаимодействии между собой, - возникло в XIX веке. В разработке молекулярно-кинетической теории на бумаге участвовали физики Рудольф Клаузиус, Людвиг Больцман и особенно Джеймс Максвелл. Вскоре последовали и подтверждающие её практические исследования. Важнейшим из них является опыт Штерна, проведенный в 1920 году.

Гений эксперимента

В биографии нобелевского лауреата по физике (1943 г.) Отто Штерна (1888-1969) есть период, когда он успешно занимался теоретическими разработками проблем термодинамики на основе постулатов квантовой механики. Руководителем его научной работы одно время был Альберт Эйнштейн. Подлинное уважение со стороны научной общественности ему принесла деятельность физика-экспериментатора. Он разработал уникальные приборы, опытным путём подтверждавшие и развивавшие теоретические выкладки.

Кроме классического эксперимента по измерению скорости теплового движения частиц, известен опыт Штерна-Герлаха, в результате которого было доказано существование спина - момента импульса атомного ядра или атома. Этот эксперимент, проведенный в 1922 году совместно с Вальтером Герлахом (1889-1979), стал важнейшим доказательством основных постулатов квантовой теории.

Описание прибора

Эксперимент 1920 года, результатом которого стало доказательство распределения скоростей теплового движения молекул, был осуществлен с помощью технически несложной установки. Основой прибора послужили два коаксиальных (соосных) цилиндра разного диаметра, внутри которых путём откачки воздуха была создана область низкого давления. На общей оси расположена проволока из платины с тонким серебряным напылением. При подключении к концам проводника электрического тока происходит нагревание проволоки до температуры, превышающей точку плавления серебра. Возникает испарение атомов металла, которые начинают прямолинейное равномерное движение к внутренней поверхности маленького цилиндра.

В малом цилиндре прорезается узкая щель, сквозь которую атомы металла проникают внутрь большого. Внешний, наружный цилиндр имеет комнатную температуру, что обеспечивает быстрое охлаждение разогретых металлических частиц. Если цилиндры не вращаются, атомы «прилипают» к экрану и оседают напротив прорези в виде ровной посеребренной полоски. Опыт Штерна заключался в следующем: когда оба цилиндра начинали вращать с определенной угловой скоростью, образовывалась размытая полоска налета, смещенная в ту сторону, которая противоположна направлению вращения.

Измерение скорости молекулярного движения

Главный показатель, который сделал видимым опыт Штерна, — скорость молекул V. Было установлено, что средняя скорость, с которой двигаются при испарении атомы серебра при нагревании спирали до 1200 °C, - от 560 до 650 м/с.

Для измерения её Штерн получил все необходимые данные:

S - смещение полосы серебра при вращении от того положения, которое она занимала в состоянии покоя;

L - путь, пройденный атомами (расстояние между внутренними поверхностями цилиндров);

U - скорость перемещения точек поверхности внешнего цилиндра;

T - время пролета атомов.

Результат, экспериментально полученный немецким физиком — V = S / U = L / V = UL / S — совпал со значениями, полученными в результате рассмотрения молекулярно-кинетической теории. Средняя скорость движения молекул серебра, определенная теоретически, была равна 584 м/с.

Это стало доказательством справедливости постулатов, сформулированных её основоположниками, видное место среди которых занимает Джеймс Максвелл.

Закон распределения Максвелла

Кратко опыт Штерна можно определить как визуализацию распределения скорости теплового движения атомов и молекул. При осаждении серебра на стенках внешнего цилиндра, когда система находится в состоянии покоя, получалась полоска с достаточно четкими краями. При вращении цилиндров она выходила размытой.

Причина этого - различие в скорости движения атомов, испускаемых при испарении серебряного покрытия проволоки. Более быстрые частицы осаждались с меньшим смещением от прорези в малом цилиндре, а те, что двигались медленнее, успевали преодолеть большее расстояние. Соотношение скоростей укладывается в пропорцию, предсказанную вычислениями Максвелла. Кривая поперечного сечения полученного напыления совпадает по форме с графическим выражением формул, послуживших основой молекулярно-кинетической теории.

Теория, проверенная практикой

Большое значение, которое имеет экспериментальная физика, опыт Штерна показывает особенно наглядно. Умение найти способ доказательства правильности теоретических постулатов особенно ценно, когда предметом научных исследований становятся объекты, неразличимые невооруженным глазом.

Последующая история науки, когда физика вступила в фазу исследования строения атома в период поиска элементарных частиц, доказала это. Одним из пионеров нового течения был немецкий физик, гениальный экспериментатор Отто Штерн.

Документальные учебные фильмы. Серия «Физика».

Наличие у атомов магнитных моментов и их квантование было доказано прямыми опытами Штерна и Герлаха (1889- 1979) в 1921 г. В сосуде с высоким вакуумом создавался с помощью диафрагм резко ограниченный атомный пучок исследуемого элемента, испаряющегося в печи К. Пучок проходил через сильное магнитное поле Н между полюсньми наконечниками N и S электромагнита. Один из наконечников (N) имел вид призмы с острым ребром, а вдоль другого (S) была выточена канавка. Благодаря такой конструкции полюсных наконечников магнитное поле получалось сильно неоднородным. После прохождения через магнитное поле пучок попадал на фотопластинку Р и оставлял на ней след.

Рассчитаем поведение атомного пучка сначала с классической точки зрения, предполагая, что никакого квантования магнитных моментов нет. Если m-магнитный момент атома, то на атом в неоднородном магнитном поле действует сила
Направим ось Z вдоль магнитного поля (т. е. от N к S перпендикулярно к полюсным наконечникам). Тогда проекция силы в этом направлении будет
Первые два слагаемых в этом выражении не играют роли.

В самом деле, по классическим представлениям атом в магнитном поле совершает прецессию вокруг оси Z, вращаясь с ларморовской частотой
(заряд лектрона обозначен -е). Поэтому проекции совершают колебания с той же частотой, становясь попеременно то положительными, то отрицательными. Если угловая скорость прецессии достаточно велика, то силу fz можно усреднить по времени. При этом первые два члена в выражении для fz обратятся в нуль, и можно написать

Чтобы составить представление о степени допустимости та кого усреднения, произведем численную оценку. Период ларморовской прецессии равен ,

где поле Н измеряется в гауссах. Например, при Н = 1000 Гс получаем с. Если скорость атомов в пучке равна = 100 м/с = см/с, то за это время атом пролетает расстояние см, пренебрежимо малое по сравнению со всеми характерными размерами установки. Это и доказывает применимость проведенного усреднения.

Но формула может быть оправдана и с квантовой точки зрения. В самом деле, включение сильного магнитного поля вдоль оси Z приводит к состоянию атома только с одной определенной составляющей магнитного момента, а именно . Остальные две составляющие в этом состоянии не могут иметь определенных значений. При измерениях в этом состоянии получили бы различные значения и притом их средние были бы равны нулю. Поэтому и при квантовом рассмотрении усреднение оправдано.

Тем не менее следует ожидать различных результатов опыта с классической и с квантовой точек зрения. В опытах Штерна и Герлаха сначала получался след атомного пучка при выключенном магнитном поле, а затем при включенном. Если бы проекция могла принимать всевозможные непрерывные значения, как требует классическая теория, то сила fz также принимала бы всевозможные непрерывные значения. Включение магнитного поля приводило бы только к уширению пучка. Не то следует ожидать по квантовой теории. В этом случае проекция mz, а с ней и средняя сила fz квантованы, т. е. могут принимать только ряд дискретных избранных значений. Если орбитальное квантовое число атома равно I , то по теории при расщеплении получится пучков (т. е. оно равно числу возможных значений, которые может принимать квантовое число m). Таким образом, в зависимости от значения числа I следовало бы ожидать, что пучок расщепится на 1, 3, 5, ... составляющих. Ожидаемое число составляющих должно было бы быть всегда нечетным.

Опыты Штерна и Герлаха доказали квантование проекции . Однако их результаты не всегда соответствовали теории, изложенной выше. В первоначальных опытах применялись пучки атомов серебра. В магнитном поле пучок расщеплялся на две составляющие. То же получалось для атомов водорода. Для атомов других химических элементов получалась и более сложная картина расщепления, однако число расщепленных пучков получалось не только нечетным, что требовалось теорией, но и четным, что противоречило ей. В теорию необходимо было внести коррективы.

К этому следует добавить результаты опытов Эйнштейна и де Гааза (1878-1966), а также опытов Барнета (1873-1956) по определению гиромагнитного отношения. Для железа, например, оказалось, что гиромагнитное отношение равно т. е. вдвое больше, чем требуется по теории.

Наконец, оказалось, что спектральные термы щелочных металлов имеют так называемую дублетную структуру, т. е. состоят из двух близко расположенных уровней. Для описания этой структуры трех квантовых чисел n, I , m оказалось недостаточно-потребовалось четвертое квантовое число. Это явилось главным мотивом, послужившим Уленбеку (р. 1900) и Гаудсмиту (1902-1979) в 1925 г. для введения гипотезы о спине электрона. Сущность этой гипотезы состоит в том, что у электрона есть не только момент количества движения и магнитный момент, связанные с перемещением этой частицы как целого. Электрон имеет также собственный или внутренний механический момент количества движения, напоминая в этом отношении классический волчок. Этот собственный момент количества движения и называется спином (от английского слова to spin - вертеться). Соответствующий ему магнитный момент называется спиновым магнитным моментом. Эти моменты обозначаются соответственно через в отличие от орбитальных моментов Спин чаще обозначают просто через s .

В опытах Штерна и Герлаха атомы водорода находились в s-состоянии, т. е. не обладали орбитальными моментами. Магнитный момент ядра пренебрежимо мал. Поэтому Уленбек и Гаудсмит предположили, что расщепление пучка обусловлено не орбитальным, а спиновым магнитным моментом. То же самое относится к опытам с атомами серебра. Атом серебра имеет единственный наружный электрон. Атомный остов ввиду его симметрии спиновым и магнитным моментами не обладает. Весь магнитный момент атома серебра создается только одним наружным электроном. Когда атом находится в нормальном, т. е. s-состоянии, то орбитальный момент валентного электрона равен нулю - весь момент является спиновым.

Сами Уленбек и Гаудсмит предполагали, что спин возникает из-за вращения электрона вокруг собственной оси. Существовавшая в то время модель атома получила еще большее сходство с Солнечной системой. Электроны (планеты) не только вращаются вокруг ядра (Солнца), но и вокруг собственных осей. Однако сразу же выяснилась несостоятельность такого классического представления о спине. Паули систематически ввел спин в квантовую механику, но исключил всякую возможность классического истолкования этой величины. В 1928 г. Дирак показал, что спин электрона автоматически содержится в его теории электрона, основанной на релятивистском волновом уравнении. В теории Дирака содержится также и спиновый магнитный момент электрона, причем для гиромагнитного отношения получается значение, согласующееся с опытом. При этом о внутренней структуре электрона ничего не говорилось - последний рассматривался как точечная частица, обладающая лишь зарядом и массой. Таким образом, спин электрона оказался квантово-релятивистским эффектом, не имеющим классического истолкования. Затем концепция спина, как внутреннего момента количества движения, была распространена на другие элементарные и сложные частицы и нашла подтверждение и широкие применения в современной физике.

Разумеется, в общем курсе физики нет возможности вдаваться в подробную и строгую теорию спина. Мы примем в качестве исходного положения, что спину s соответствует векторный оператор проекции которого удовлетворяют таким же перестановочным соотношениям, что и проекции оператора орбитального момента, т. е.

Из них следует, что определенные значения в одном и том же состоянии могут иметь квадрат полного спина и одна из его проекций на определенную ось (принимаемую обычно за ось Z). Если максимальное значение проекции sz (в единицах ) равно s, то число всех возможных проекций, соответствующих данному s, будет равно 2s + 1. Опыты Штерна и Герлаха показали, что для электрона это число равно 2, т. е. 2s + 1 = 2, откуда s = 1/2. Максимальное значение, которое может принимать проекция спина на избранное направление (в единицах ), т. е. число s, и принимается за значение спина частицы.

Спин частицы может быть либо целым, либо полуцелым. Для электрона, таким образом, спин равен 1/2. Из перестановочных соотношений следует, что квадрат спина частицы равен , а для электрона (в единицах 2).
Измерения проекции магнитного момента по методу Штерна и Герлаха показали, что для атомов водорода и серебра величина равна магнетону Бора , т. е. . Таким образом, гиромагнитное отношение для электрона

1 - платиновая проволока с нанесённым на неё слоем серебра; 2 - щель, формирующая пучок атомов серебра; 3 - пластинка, на которой осаждаются атомы серебра; П и П1 - положения полосок осажденного серебра при неподвижном приборе и при вращении прибора.

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v {\displaystyle v} , определяемой температурой нагрева платиновой проволоки, то есть температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω {\displaystyle \omega } . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s {\displaystyle s} наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t = s u = l v ⇒ v = u l s = ω R b i g (R b i g − R s m a l l) s {\displaystyle t={\frac {s}{u}}={\frac {l}{v}}\Rightarrow v={\frac {ul}{s}}={\frac {\omega R_{big}(R_{big}-R_{small})}{s}}} ,

где s {\displaystyle s} - смещение полосы, l {\displaystyle l} - расстояние между цилиндрами, а u {\displaystyle u} - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра (584 м/с) совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее. При этом опыт давал лишь приблизительные сведения о характере распределения Максвелла, более точное экспериментальное подтверждение относится к 1930 году (

В 1920 году физиком Отто Штерном (1888-1969) впервые были экспериментально определены скорости частиц вещества.

Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры, и серебро с ее поверхности испарялось (рис. 1.7).

Рис. 1.7. Схема опыта Штерна.

В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проникали движущиеся атомы металла, осаждаясь на внутренней поверхности внешнего цилиндра, образуя хорошо наблюдаемую тонкую полоску прямо напротив прорези.

Цилиндры начинали вращать с постоянной угловой скоростью. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол (рис. 1.8). При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние.

Рис.1.8. 1 – Здесь оседают частицы, когда установка неподвижна. 2 – Здесь оседают частицы при вращении установки.

Зная величины радиусов цилиндров, скорость их вращения и величину смещения легко найти скорость движения атомов (рис. 1.9).

Время полета атома t от прорези до стенки внешнего цилиндра можно найти, разделив путь, пройденный атомом и равный разности радиусов цилиндров, на скорость атома v. За это время цилиндры повернулись на угол φ, величину которого найдем, умножив угловую скорость ω на время t. Зная величину угла поворота и радиус внешнего цилиндра R 2 , легко найти величину смещения l и получить выражение, из которого можно выразить скорость движения атома (1.34, d).

При температуре нити 1200 0 С среднее значение скорости атомов серебра, полученное после обработки результатов опытов Штерна, оказалось близким к 600 м/с, что вполне соответствует значению средней квадратичной скорости, вычисленному по формуле (1.28).

1.7.6. Уравнение состояния для газа Ван-дер Вальса.

Уравнение Клапейрона-Менделеева достаточно хорошо описывает газ при высоких температурах и низких давлениях, когда он находится в условиях достаточно далёких от условий конденсации. Однако для реального газа это не всегда выполняется и тогда приходится учитывать потенциальную энергию взаимодействия молекул газа между собой. Простейшим уравнением состояния, описывающим неидеальный газ, является уравнение, предложенное в 1873 г. Иоханнесом Дидериком Ван-дер-Ваальсом (1837 - 1923):


Пусть на молекулы газа действуют силы притяжения и отталкивания. И те, и другие силы действуют на небольших расстояниях, но силы притяжения убывают медленнее сил отталкивания. Силы притяжения относятся к взаимодействию молекулы с её ближайшим окружением, а сила отталкивания - проявляется в момент столкновения двух молекул. Силы притяжения внутри газа в среднем скомпенсированы для каждой отдельной молекулы. На молекулы, расположенные в тонком слое вблизи стенки сосуда, действует сила притяжения со стороны других молекул, направленная внутрь газа, которая создает давление, добавочное к создаваемому самой стенкой. Это давление иногда называют внутренним давлением . Суммарная сила внутреннего давления, действующая на элемент поверхностного слоя газа должна быть пропорциональна числу молекул газа в этом элементе и также числу молекул в слое газа, непосредственно примыкающему к рассматриваемому элементу поверхностного слоя. Толщина этих слоёв определяется радиусом действия сил притяжения и имеет тот же порядок величины. При увеличении концентрации молекул газа в раз, сила притяжения, приходящаяся на единицу площади приповерхностного слоя, возрастёт в раз. Поэтому величина внутреннего давления растёт пропорционально квадрату концентрации молекул газа. Тогда для суммарного давления внутри газа можно записать.

Из формул

получаем формулу для расчета средней квадратичной скорости движения молекул одноатомного газа:

где R - универсальная газовая постоянная.

Таким образом зависит от температуры и природы газа. Так, при 0°С для водорода она равна 1800 м/с. для азота - 500 м/с.

Впервые на опыте определил скорость молекул О. Штерн. В камере, из которой откачан воздух, находятся два коаксиальных цилиндра 1 и 2 (рис. 1), которые могут вращаться вокруг оси с постоянной угловой скоростью .

Вдоль оси натянута платиновая посеребренная проволока, через которую пропускают электрический ток. Она нагревается, и серебро испаряется. Атомы серебра через щель 4 в стенке цилиндра 2 попадают в цилиндр 1 и оседают на его внутренней поверхности, оставляя след в виде узкой полоски, параллельной щели. Если цилиндры неподвижны, то полоска расположена напротив щели (точка В на рис. 2, а) и имеет одинаковую толщину.

При равномерном вращении цилиндра с угловой скоростью полоска смещается в сторону, противоположную вращению, на расстояние s относительно точки В (рис. 2, б). На такое расстояние сместилась точка В цилиндра 1 за время t, которое необходимо, чтобы атомы серебра прошли расстояние, равное R - r, где R и r - радиусы цилиндров 1 и 2.

где - линейная скорость точек поверхности цилиндра 1. Отсюда

Скорость атомов серебра

Зная R, r, и измерив экспериментально s, по этой формуле можно рассчитать среднюю скорость движения атомов серебра. В опыте Штерна . Это значение совпадает с теоретическим значением средней квадратичной скорости молекул. Это служит экспериментальным доказательством справедливости формулы (1), а следовательно, и формулы (3).

В опыте Штерна было обнаружено, что ширина полоски на поверхности вращающегося цилиндра гораздо больше геометрического изображения щели и толщина ее в разных местах неодинакова (рис. 3, а). Это можно объяснить только тем, что атомы серебра движутся с различными скоростями. Атомы, летящие с некоторой скоростью, попадают в точку В’. Атомы, летящие быстрее, попадают в точку, лежащую на рисунке 2 выше точки В’, а летящие медленнее, - ниже точки В’. Таким образом, каждой точке изображения соответствует определенная скорость, которую достаточно просто определить из опыта. Этим и объясняется то, что толщина слоя атомов серебра, осевших на поверхности цилиндра, не везде одинакова. Наибольшая толщина в средней части слоя, а по краям толщина уменьшается.

Изучение формы сечения полоски осевшего серебра с помощью микроскопа показало, что она имеет вид, примерно соответствующий изображенному на рисунке 3, б. По толщине отложившегося слоя можно судить о распределении атомов серебра по скоростям.

Разобьем весь интервал измеренных на опыте скоростей атомов серебра на малые . Пусть - одна из скоростей этого интервала. По плотности слоя подсчитаем число атомов, имеющих скорость в интервале от , и построим график функции

где N - общее число атомов серебра, осевших на поверхности цилиндра. Получим кривую, изображенную на рисунке 4. Она называется функцией распределения молекул по скоростям.

Площадь заштрихованной площадки равна

т.е. равна относительному числу атомов, имеющих скорость в пределах

Мы видим, что числа частиц, имеющих скорость из разных интервалов , резко различны. Существует какая-то скорость, около значения которой находятся скорости, с которыми движется наибольшее число молекул. Она называется наиболее вероятной скоростью , и ей соответствует максимум на рисунке 4. Эта кривая хорошо соответствует кривой, полученной Дж. Максвеллом, который, пользуясь статистическим методом, теоретически доказал, что в газах, находящихся в состоянии термодинамического равновесия, устанавливается некоторое, не меняющееся со временем, распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону, графически изображаемому кривой . Наиболее вероятная скорость, как показал Максвелл, зависит от температуры газа и массы его молекул по формуле