Здоровье

Окислитель - это атом, принимающий электроны. Окислительно-восстановительные реакции В ходе реакции атомы окислителя теряют электроны

Описание

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется ; окислитель присоединяет электроны, то есть восстанавливается . Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений - окисления и восстановления, происходящих одновременно и без отрыва одного от другого.

Окисление

Окисление - процесс отдачи электронов, с увеличением степени окисления.

При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомыокислителя - акцепторами электронов.

В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.

Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель:

окислитель + e − ↔ сопряжённый восстановитель .

Восстановление

При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.

Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель:

восстановитель - e − ↔ сопряжённый окислитель .

Несвязанный, свободный электрон является сильнейшим восстановителем.

Окислительно-восстановительная пара

Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару , а их взаимопревращения являются окислительно-восстановительными полуреакциями.



В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, т.е. восстановлением, другая - с отдачей электронов, т.е. окислением.

Виды окислительно-восстановительных реакций

Межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н 2 S + Cl 2 → S + 2HCl

Внутримолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H 2 O → 2H 2 + O 2

Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl 2 + H 2 O → HClO + HCl

Репропорционирование (конпропорционирование) - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например:

NH 4 NO 3 → N 2 O + 2H 2 O

Примеры

Окислительно-восстановительная реакция между водородом и фтором

Разделяется на две полуреакции:

1) Окисление:

2) Восстановление:

Окисление, восстановление

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:

Окислитель и восстановитель используют для составления реакции в органической и неорганической химии. Рассмотрим основные характеристики таких взаимодействий, выявим алгоритм составления уравнения и расстановки коэффициентов.

Определения

Окислитель - это атом либо ион, который при взаимодействии с другими элементами принимает электроны. Процесс принятия электронов называют восстановлением, и связан он с понижением степени окисления.

В курсе неорганической химии рассматривается два основных метода расстановки коэффициентов. Восстановитель и окислитель в реакциях определяют путем составления электронного баланса либо методом полуреакций. Подробнее остановимся на первом способе расставления коэффициентов в ОВР.

Степени окисления

Прежде чем определять окислитель в реакции, нужно расставить степени окисления у всех элементов в веществах, участвующих в превращении. Она представляет собой заряд атома элемента, вычисленный по определенным правилам. В сложных веществах сумма всех положительных и отрицательных степеней окисления должна быть равна нулю. Для металлов главных подгрупп она соответствует валентности и имеет положительную величину.

Для неметаллов, которые в формуле располагаются в конце, степень определяется путем вычитания из восьми номера группы и имеет отрицательное значение.

У простых веществ она равна нулю, так как не наблюдается процесса принятия или отдачи электронов.

У сложных соединений, состоящих из нескольких химических элементов, для определения степеней окисления используют математические вычисления.

Итак, окислитель - это атом, который в процессе взаимодействия понижает свою степень окисления, а восстановитель, напротив, повышает ее значение.

Примеры ОВР

Основной особенностью заданий, связанных с расстановкой коэффициентов в окислительно-восстановительных реакциях, является определение пропущенных веществ и составление их формул. Окислитель - это элемент, который будет принимать электроны, но помимо него в реакции должен участвовать и восстановитель, отдающий их.

Приведем обобщенный алгоритм, по которому можно выполнять задания, предлагаемые выпускникам старшей школы на едином государственном экзамене. Рассмотрим несколько конкретных примеров, чтобы понять, что окислитель - это не только элемент в сложном веществе, но и простое вещество.

Сначала необходимо расставить у каждого элемента значения степеней окисления, используя определенные правила.

Далее нужно проанализировать элементы, которые не участвовали в образовании веществ, и составить для них формулы. После того как все пропуски будут ликвидированы, можно переходить к процессу составления электронного баланса между окислителем и восстановителем. Полученные коэффициенты ставят в уравнение, при необходимости добавляя их перед теми веществами, которые не вошли в баланс.

Например, пользуясь методом электронного баланса, необходимо завершить предложенное уравнение, расставить перед формулами необходимые коэффициенты.

H 2 O 2 + H 2 SO 4 +KMnO 4 = MnSO 4 + O 2 + …+…

Для начала у каждого определим значения степеней окисления, получим

H 2+ O 2 - + H 2+ S +6 O 4 -2 +K + Mn +7 O 4 -2 = Mn +2 S +6 O 4 -2 + O 2 0 + …+…

В предложенной схеме они меняются у кислорода, а также у марганца в перманганате калия. Таким образом, восстановитель и окислитель нами найдены. В правой части отсутствует вещество, в котором бы был калий, поэтому вместо пропусков составим формулу его сульфата.

Последним действием в данном задании будет расстановка коэффициентов.

5H 2 O 2 + 3H 2 SO 4 +2KMnO 4 = 2Mn SO 4 + 5O 2 + 8H 2 O + K 2 SO 4

В качестве сильных окислителей можно рассмотреть кислоты, перманганат калия, перекись водорода. Все металлы проявляют восстановительные свойства, превращаясь в реакции в катионы, имеющие положительный заряд.

Заключение

Процессы, касающиеся принятия и отдачи отрицательных электронов, происходят не только в неорганической химии. Обмен веществ, который осуществляется в живых организмах, является наглядным вариантом протекания окислительно-восстановительных реакций в органической химии. Это подтверждает значимость рассмотренных процессов, их актуальность для живой и неживой природы.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ.


Например:


Zn + 2H + → Zn 2+ + H 2 ,


FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,


Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.


Окисление - это процесс отдачи электронов атомом, молекулой или ионом.


Если атом отдает свои электроны, то он приобретает положительный заряд:


Например:


Al - 3e - = Al 3+


H 2 - 2e - = 2H +


При окислении степень окисления повышается.


Если отрицательно заряженный ион (заряд -1), например Cl - , отдает 1 электрон, то он становится нейтральным атомом:


2Cl - - 2e - = Cl 2


Если положительно заряженный ион или атом отдает электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:


Fe 2+ - e - = Fe 3+


Восстановление - это процесс присоединения электронов атомом, молекулой или ионом.


Если атом присоединяет электроны, то он превращается в отрицательно заряженный ион:


Например:


Сl 2 + 2е- = 2Сl -


S + 2е - = S 2-


Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается:


Fe 3+ + e- = Fe 2+


или он может перейти в нейтральный атом:


Fe 2+ + 2e- = Fe 0


Окислителем является атом, молекула или ион, принимающий электроны. Восстановителем является атом, молекула или ион, отдающий электроны.


Окислитель в процессе реакции восстанавливается, восстановитель - окисляется.


Окисление всегда сопровождается восстановлением, и наоборот, восстановление всегда связано с окислением, что можно выразить уравнениями:


Восстановитель - е - ↔ Окислитель


Окислитель + е - ↔ Восстановитель


Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов - окисления и восстановления

Важнейшие восстановители и окислители

Восстановители


Окислители


Металлы, водород, уголь


Оксид углерода(II) CO


Сероводород H 2 S, оксид серы(IV) SO 2 , сернистая кислота H 2 SO 3 и ее соли


Иодоводородная кислота HI, бромоводородная кислота HBr, соляная кислота HCl


Хлорид олова(II) SnCl 2 , сульфат железа(II) FeSO 4 , сульфат марганца(II) MnSO 4 , сульфат хрома(III) Cr 2 (SO 4) 3


Азотистая кислота HNO 2 , аммиак NH 3 , гидразин N 2 H 4 , оксид азота(II) NO


Фосфористая кислота H 3 PO 3


Альдегиды, спирты, муравьиная и щавелевая кислоты, глюкоза


Катод при электролизе

Галогены


Перманганат калия KMnO 4 , манганат калия K 2 MnO 4 , оксид марганца(IV) MnO 2


Дихромат калия K 2 Cr 2 O 7 , хромат калия K 2 CrO 4


Азотная кислота HNO 3


Кислород O 2 , озон О 3 ,


пероксид водорода Н 2 О 2


Серная кислота H 2 SO 4 (конц.), селеновая кислота H 2 SeO 4


Оксид меди(II) CuO, оксид серебра(I) Ag 2 O, оксид свинца(IV) PbO 2


Ионы благородных металлов (Ag + , Au 3+ и др.)


Хлорид железа(III) FeCl 3


Гипохлориты, хлораты и перхлораты


Царская водка, смесь концентрированной азотной и плавиковой кислот


Анод при электролизе


Метод электронного баланса.

Для уравнивания ОВР используют несколько способов, из которых мы пока рассмотрим один - метод электронного баланса.


Напишем уравнение реакции между алюминием и кислородом:


Al + O 2 = Al 2 O 3


Пусть вас не вводит в заблуждение простота этого уравнения. Наша задача - разобраться в методе, который в будущем позволит вам уравнивать гораздо более сложные реакции.


Итак, в чем заключается метод электронного баланса? Баланс - это равенство. Поэтому следует сделать одинаковым количество электронов, которые отдает один элемент и принимает другой элемент в данной реакции. Первоначально это количество выглядит разным, что видно из разных степеней окисления алюминия и кислорода:


Al 0 + O 2 0 = Al 2 +3 O 3 -2


Алюминий отдает электроны (приобретает положительную степень окисления), а кислород - принимает электроны (приобретает отрицательную степень окисления). Чтобы получить степень окисления +3, атом алюминия должен отдать 3 электрона. Молекула кислорода, чтобы превратиться в кислородные атомы со степенью окисления -2, должна принять 4 электрона:


Al 0 - 3e- = Al +3


O 2 0 + 4e- = 2O -2


Чтобы количество отданных и принятых электронов выровнялось, первое уравнение надо умножить на 4, а второе - на 3. Для этого достаточно переместить числа отданных и принятых электронов против верхней и нижней строчки так, как показано на схеме вверху.


Если теперь в уравнении перед восстановителем (Al) мы поставим найденный нами коэффициент 4, а перед окислителем (O 2) - найденный нами коэффициент 3, то количество отданных и принятых электронов выравнивается и становится равным 12. Электронный баланс достигнут. Видно, что перед продуктом реакции Al 2 O 3 необходим коэффициент 2. Теперь уравнение окислительно-восстановительной реакции уравнено:


4Al + 3O 2 = 2Al 2 O 3


Все преимущества метода электронного баланса проявляются в более сложных случаях, чем окисление алюминия кислородом.


Например, известная всем "марганцовка" – марганцевокислый калий KMnO 4 - является сильным окислителем за счет атома Mn в степени окисления +7. Даже анион хлора Cl – отдает ему электрон, превращаясь в атом хлора. Это иногда используют для получения газообразного хлора в лаборатории:


K + Mn +7 O 4 -2 + K + Cl - + H 2 SO 4 = Cl 2 0 + Mn +2 SO 4 + K 2 SO 4 + H 2 O


Составим схему электронного баланса:


Mn +7 + 5e- = Mn +2


2Cl - - 2e- = Cl 2 0


Двойка и пятерка - главные коэффициенты уравнения, благодаря которым удается легко подобрать все другие коэффициенты. Перед Cl 2 следует поставить коэффициент 5 (или 2 × 5 = 10 перед KСl), а перед KMnO 4 - коэффициент 2. Все остальные коэффициенты привязывают к этим двум коэффициентам. Это гораздо легче, чем действовать простым перебором чисел.


2 KMnO 4 + 10KCl + 8H 2 SO 4 = 5 Cl 2 + 2MnSO 4 + 6K 2 SO 4 + 8H 2 O


Чтобы уравнять количество атомов К (12 атомов слева), надо перед K 2 SO 4 в правой части уравнения поставить коэффициент 6. Наконец, чтобы уравнять кислород и водород, достаточно перед H 2 SO 4 и H 2 O поставить коэффициент 8. Мы получили уравнение в окончательном виде.


Метод электронного баланса, как мы видим, не исключает и обыкновенного подбора коэффициентов в уравнениях окислительно-восстановительных реакций, но может заметно облегчить такой подбор.


Составление уравнения реакции меди с раствором нитрата палладия (II) . Запишем формулы исходных и конечных веществ реакции и покажем изменения степеней окисления:

из которых следует, что при восстановителе и окислителе коэффициенты равны 1. Окончательное уравнение реакции:


Cu + Pd(NO 3) 2 = Cu(NO 3) 2 + Pd


Как видно, в суммарном уравнении реакции электроны не фигурируют.


Чтобы проверить правильность составленного уравнения, подсчитываем число атомов каждого элемента в его правой и левой частях. Например, в правой части 6 атомов кислорода, в левой также 6 атомов; палладия 1 и 1; меди тоже 1 и 1. Значит, уравнение составлено правильно.


Переписываем это уравнение в ионной форме:


Cu + Pd 2+ + 2NO 3 - = Cu 2+ + 2NO 3 - + Рd


И после сокращения одинаковых ионов получим


Cu + Pd 2+ = Cu 2+ + Рd

Составление уравнения реакции взаимодействия оксида марганца (IV) с концентрированной соляной кислотой

(с помощью этой реакции в лабораторных условиях получают хлор).


Запишем формулы исходных и конечных веществ реакции:


НCl + МnО 2 → Сl 2 + MnСl 2 + Н 2 О


Покажем изменение степеней окисления атомов до и после реакции:



Эта реакция окислительно-восстановительная, так как изменяются степени окисления атомов хлора и марганца. НCl - восстановитель, MnО 2 - окислитель. Составляем электронные уравнения:



и находим коэффициенты при восстановителе и окислителе. Они соответствен­но равны 2 и 1. Коэффициент 2 (а не 1) ставится потому, что 2 атома хлора со степенью окисления -1 отдают 2 электрона. Этот коэффициент уже стоит в электронном уравнении:


2НСl + MnO 2 → Сl 2 + MnСl 2 + Н 2 О


Находим коэффициенты для других реагирующих веществ. Из электронных уравнений видно, что на 2 моль HCl приходится 1 моль MnО 2 . Однако, учитывая, что для связывания образующегося двухзарядного иона марганца нужно еще 2 моль кислоты, перед восстановителем следует поставить коэффициент 4. Тогда воды получится 2 моль. Окончательное уравнение имеет вид


4НCl + МnО 2 = Сl 2 + MnСl 2 + 2Н 2 О


Проверку правильности написания уравнения можно ограничить подсчетом числа атомов одного какого-либо элемента, например хлора: в левой части 4 и в правой 2 + 2 = 4.


Поскольку в методе электронного баланса изображаются уравнения реакций в молекулярной форме, то после составления и проверки их следует написать в ионной форме.


Перепишем составленное уравнение в ионной форме:


4Н + + 4Сl - + МnО 2 = Сl 2 + Мn 2 + + 2Сl - + 2Н 2 О


и после сокращения одинаковых ионов в обеих частях уравнения получим


4Н + + 2Сl - + МnО 2 = Сl 2 + Мn 2 + + 2Н 2 О

Составление уравнения реакции взаимодействия сероводорода с подкисленным раствором перманганата калия.

Напишем схему реакции - формулы исходных и полученных веществ:


Н 2 S + КМnO 4 + Н 2 SО 4 → S + МnSО 4 + К 2 SO 4 + Н 2 О


Затем покажем изменение степеней окисления атомов до и после реакции:



Изменяются степени окисления у атомов серы и марганца (Н 2 S - восстановитель, КМnО 4 - окислитель). Составляем электронные уравнения, т.е. изображаем процессы отдачи и присоединения электронов:



И наконец, находим коэффициенты при окислителе и восстановителе, а затем при других реагирующих веществах. Из электронных уравнений видно, что надо взять 5 моль Н 2 S и 2 моль КМnО 4 , тогда получим 5 моль атомов S и 2 моль МnSО 4 . Кроме того, из сопоставления атомов в левой и правой частях уравнения, найдем, что образуется также 1 моль К 2 SО 4 и 8 моль воды. Окончательное уравнение реакции будет иметь вид


5Н 2 S + 2КМnО 4 + ЗН 2 SО 4 = 5S + 2МnSО 4 + К 2 SО 4 + 8Н 2 О


Правильность написания уравнения подтверждается подсчетом атомов одного элемента, например кислорода; в левой части их 2 4 + 3 4 = 20 и в правой части 2 4 + 4 + 8 = 20.


Переписываем уравнение в ионной форме:


5Н 2 S + 2MnO 4 - + 6H + = 5S + 2Мn 2+ + 8Н 2 О


Известно, что правильно написанное уравнение реакции является выражением закона сохранения массы веществ. Поэтому число одних и тех же атомов в исходных веществах и продуктах реакции должно быть одинаковым. Должны сохраняться и заряды. Сумма зарядов исходных веществ всегда должна быть равна сумме зарядов продуктов реакции.


Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Классификация ОВР

Различают три основных типа окислительно-восстановительных реакций:


1) Реакции межмолекулярного окисления-восстановления
(когда окислитель и восстановитель - разные вещества);


2) Реакции диспропорционирования
(когда окислителем и восстановителем может служить одно и то же вещество);


3) Реакции внутримолекулярного окисления-восстановления
(когда одна часть молекулы выступает в роли окислителя, а другая - в роли восстановителя).>


Рассмотрим примеры реакций трех типов.


1. Реакциями межмолекулярного окисления-восстановления являются все уже рассмотренные нами в этом параграфе реакции.
Рассмотрим несколько более сложный случай, когда не весь окислитель может быть израсходован в реакции, поскольку часть его участвует в обычной - не окислительно-восстановительной реакции обмена:


Cu 0 + H + N +5 O 3 -2 = Cu +2 (N +5 O 3 -2) 2 + N +2 O -2 + H 2 O


Часть частиц NO 3 - участвует в реакции в качестве окислителя, давая оксид азота NO, а часть ионов NO 3 - в неизменном виде переходит в соединение меди Cu(NO 3) 2 . Составим электронный баланс:


Cu 0 - 2e- = Cu +2


N +5 + 3e- = N +2


Поставим найденный для меди коэффициент 3 перед Cu и Cu(NO 3) 2 . А вот коэффициент 2 следует поставить только перед NO, потому что весь имеющийся в нем азот участвовал в окислительно-восстановительной реакции. Было бы ошибкой поставить коэффициент 2 перед HNO 3 , потому что это вещество включает в себя и те атомы азота, которые не участвуют в окислении-восстановлении и входят в состав продукта Cu(NO 3) 2 (частицы NO 3 - здесь иногда называют "ионом-наблюдателем").


Остальные коэффициенты подбираются без труда по уже найденным:


3 Cu + 8HNO 3 = 3 Cu(NO 3) 2 + 2 NO + 4H 2 O


2. Реакции диспропорционирования происходят тогда, когда молекулы одного и того же вещества способны окислять и восстанавливать друг друга. Это становится возможным, если вещество содержит в своем составе атомы какого-либо элемента в промежуточной степени окисления.


Следовательно, степень окисления способна как понижаться, так и повышаться. Например:


HN +3 O 2 = HN +5 O 3 + N +2 O + H 2 O


Эту реакцию можно представить как реакцию между HNO 2 и HNO 2 как окислителем и восстановителем и применить метод электронного баланса:


HN +3 O 2 + HN +3 O 2 = HN +5 O3 + N +2 O + H 2 O


N +3 - 2e- = N +5


N +3 + e- = N +2


Получаем уравнение:


2HNO 2 + 1HNO 2 = 1 HNO 3 + 2 NO + H 2 O


Или, складывая вместе моли HNO 2:


3HNO 2 = HNO 3 + 2NO + H 2 O


Реакции внутримолекулярного окисления-восстановления происходят тогда, когда в молекуле соседствуют атомы-окислители и атомы-восстановители. Рассмотрим разложение бертолетовой соли KClO 3 при нагревании:


KCl +5 O 3 -2 = KCl - + O 2 0


Это уравнение также подчиняется требованию электронного баланса:


Cl +5 + 6e- = Cl -


2O -2 - 2e- = O 2 0


Здесь возникает сложность - какой из двух найденных коэффициентов поставить перед KClO 3 - ведь эта молекула содержит и окислитель и восстановитель?


В таких случаях найденные коэффициенты ставятся перед продуктами:


KClO 3 = 2KCl + 3O 2


Теперь ясно, что перед KClO 3 надо поставить коэффициент 2.


2KClO 3 = 2KCl + 3O 2


Внутримолекулярная реакция разложения бертолетовой соли при нагревании используется при получении кислорода в лаборатории.

Метод полуреакций



Как показывает само название, этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления с последующим суммированием их в общее уравнение.
В качестве примера составим уравнение той же реакции, которую использовали при объяснении метода электронного баланса.
При пропускании сероводорода Н 2 S через подкисленный раствор перманганата калия КМnО 4 малиновая окраска исчезает и раствор мутнеет.
Опыт показывает, что помутнение раствора происходит в результате образования элементной серы, т.е. протекания процесса:


Н 2 S → S + 2H +


Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части схемы отнять два электрона, после чего можно стрелку заменить на знак равенства:


Н 2 S - 2е - = S + 2H +


Это первая полуреакция - процесс окисления восстановителя Н 2 S.


Обесцвечивание раствора связано с переходом иона MnO 4 - (он имеет малиновую окраску) в ион Mn 2+ (практически бесцветный и лишь при большой концентрации имеет слабо-розовую окраску), что можно выразить схемой


MnO 4 - → Mn 2+


В кислом растворе кислород, входящий в состав ионов МnО 4 , вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так:


MnO 4 - + 8Н + → Мn 2+ + 4Н 2 О


Чтобы стрелку заменить на знак равенства, надо уравнять и заряды. Поскольку исходные вещества имеют семь положительных зарядов (7+), а конечные - два положительных (2+), то для выполнения условия сохранения зарядов надо к левой части схемы прибавить пять электронов:


MnO 4 - + 8Н + + 5e - = Mn 2+ + 4Н 2 О


Это вторая полуреакция - процесс восстановления окислителя, т.е. перманганат-иона


Для составления общего уравнения реакции надо уравнения полуреакций почленно сложить, предварительно уравняв числа отданных и полученных электронов. В этом случае по правилам нахождения наименьшего кратного определяют соответствующие множители, на которые умножаются уравнения полуреакций. Сокращенно запись проводится так:



И, сократив на 10Н + , окончательно получим


5Н 2 S + 2MnO 4 - + 6H + = 5S + 2Mn 2+ + 8Н 2 О


Проверяем правильность составленного в ионной форме уравнения: число атомов кислорода в левой части 8, в правой 8; число зарядов: в левой части (2-)+(6+) = 4+, в правой 2(2+) = 4+. Уравнение составлено правильно, так как атомы и заряды уравнены.


Методом полуреакций составляется уравнение реакции в ионной форме. Чтобы от него перейти к уравнению в молекулярной форме, поступаем так: в левой части ионного уравнения к каждому аниону подбираем соответствующий катион, а к каждому катиону - анион. Затем те же ионы в таком же числе записываем в правую часть уравнения, после чего ионы объединяем в молекулы:




Таким образом, составление уравнений окислительно-восстановительных реакций с помощью метода полуреакций приводит к тому результату, что и метод электронного баланса.


Сопоставим оба метода. Достоинство ыметода полуреакций по срав­нению с методом электронного баланса в том. что в нем применяются не гипотетические ионы, а реально существующие. В самом деле, в растворе нет ионов , а есть ионы .


При методе полуреакций не нужно знать степень окисления атомов.


Написание отдельных ионных уравнений полуреакций необходимо для понимания химических процессов в гальваническом элементе и при электролизе. При этом методе видна роль среды как активного участника всего процесса. Наконец, при использовании метода полуреакций не нужно знать все получающиеся вещества, они появляются в уравнении реакции при выводе его. Поэтому методу полуреакций следует отдать предпочтение и применять его при составлении уравнений всех окислительно-восстановительных реакций, протекающих в водных растворах.

Окислительно-восстановительные реакции, или сокращенно ОВР, являются одной из основ предмета химии, так как описывают взаимодействие отдельных химических элементов друг с другом. Как следует из названия данных реакций, в них участвуют как минимум два различных химических вещества одно из которых выступает в качестве окислителя, а другое – восстановителя. Очевидно, что очень важно уметь отличать и определять их в различных химических реакциях.

Как определить окислитель и восстановитель
Основная сложность в определении окислителя и восстановителя в химических реакциях заключается в том, что одни и те же вещества в разных случаях могут быть как окислителями, так и восстановителями. Чтобы научиться правильно определять роль конкретного химического элемента в реакции нужно четко уяснить следующие базовые понятия.
  1. Окислением называют процесс отдачи электронов с внешнего электронного слоя химического элемента. В свою очередь окислителем будет атом, молекула или ион, которые принимают электроны и тем самым понижают степень своего окисления, что есть восстанавливаются . После химической реакции взаимодействия с другим веществом окислитель всегда приобретает положительный заряд.
  2. Восстановлением называют процесс присоединения электронов на внешний электронный слой химического элемента. Восстановителем будет атом, молекула или ион, которые отдают свои электроны и тем самым повышают степень своего окисления, то есть окисляются . После химической реакции взаимодействия с другим веществом восстановитель всегда приобретает положительный заряд.
  3. Проще говоря окислитель – это вещество, которое «отбирает» электроны, а восстановитель – вещество, которое отдает их окислителю. Определить кто в окислительно-восстановительной реакции выполняет роль окислителя, кто восстановителя и в каких случаях окислитель становится восстановителем и наоборот можно, зная типичное поведение в химических реакциях отдельных элементов.
  4. Типичными восстановителями являются металлы и водород: Fe, K, Ca, Cu, Mg, Na, Zn, H). Чем меньше они ионизироаны, тем больше их восстановительные свойства. Например, частично окислившееся железо, отдавшее один электрон и имеющее заряд +1, сможет отдать на один электрон меньше по сравнению с «чистым» железом. Также восстановителями могут быть соединения химических элементов в низшей степени окисления, у которых заполнены все свободные орбитали и которые могут только отдавать электроны, например аммиак NH 3 , сероводород H 2 S, бромоводород HBr, йодоводород HI, хлороводород HCl.
  5. Типичными окислителями являются многие неметаллы (F, Cl, I, O, Br). Также окислителями могут выступать металлы, имеющие высокую степень окисления (Fe +3 , Sn +4 , Mn +4), также некоторые соединения элементов в высокой степени окисления: перманганат калия KMnO 4 , серная кислота Н 2 SO 4 , азотная кислота HNO 3 , оксид меди CuO, хлорид железа FeCl 3 .
  6. Химические соединения в неполных или промежуточных степенях окисления, например одноосновная азотная кислота HNO 2 , пероксид водорода H 2 O 2 , сернистая кислота H 2 SO 3 могут проявлять как окислительные, так и восстановительные свойства в зависимости от окислительно-восстановительных свойств участвующего во взаимодействии второго реагента.
Определим окислитель и восстановитель на примере простой реакции взаимодействия взаимодействия натрия с кислородом.

Ка следует из данного примера один атом натрия отдает одному атому кислорода свой электрон. Следовательно, натрий является восстановителем, а кислород окислителем. При этом натрий окислится полностью, так как отдаст максимально возможное количество электронов, а атом кислорода будет восстановлен не полностью, так как сможет принять еще один электрон от другого атома кислорода.

Химические реакции, протекающие с изменением степеней окисления элементов, называются окислительно-восстановительными.

Основные положения теории окисления-восстановления

1. Процесс отдачи электронов атомом или ионом называется окислением:

S 0 - 4e - ® S 4+ (окисление)

Атом или ион, который отдаёт электроны, называется восстановителем (восстановитель): Zn 0 -2e - ® Zn 2+ (окисление).

2. Процесс присоединения электронов атомом или ионом называется восстановлением: S 6+ + 8e - ® S 2- (восстановление).

Атомы или ионы, принимающие электроны, называются окислителями (окислитель): Cl - + e - ® Cl 0 (восстановление).

Окислитель во время реакции восстанавливается, а восстановитель окисляется. Окисление невозможно без одновременно протекающего с ним восстановления и наоборот, восстановление одного вещества невозможно без одновременного окисления другого.

3. В окислительно-восстановительных процессах количество электронов, отданных в процессе окисления, всегда должно быть равно количеству электронов, принятых в процессе восстановления.

Пример:

Cu 2+ O 2- + H 2 0 = Cu 0 + H 2 O 2-

окислитель Cu 2+ +2e - ® Cu 0 восстановление

восстановитель H 2 0 - 2e - ® 2H + окисление

4. Уравнивание количества отданных и принятых электронов производят путём подбора коэффициентов с предварительным составлением уравнения электронного баланса

Пример:

Pb 2+ S 2- + HNO 3 ® S 0 + Pb 2+ (NO 3) 2 + N 2+ O 2- + H 2 O

Восстановитель S 2- - 2e - ® S 0 3 окисление

окислитель N 5+ + 3e - ® N 2+ 2 восстановление

3PbS + 8HNO 3 ® 3S + 3Pb(NO 3) 2 + 2NO + 4H 2 O.

5. При составлении уравнения электронного баланса необходимо исходить из такого количества атомов или ионов сколько их входит в состав молекулы исходного вещества, а иногда в состав молекулы продуктов реакции

Пример:

K 2 Cr 2 6+ O 7 + H 2 SO 4 +KJ - ® J 2 0 + Cr 2 3+ (SO 4) 3 + K 2 SO 4 +H 2 O

Окислитель 2Cr 6+ + 6e - ® 2Cr 3+ 2 1 восстановление

восстановитель 2J - - 2e - ® J 2 0 6 3 окисление

6. Окислительно-восстановительные процессы протекают чаще всего при наличии среды: нейтральной, кислой или щелочной.

Подбор коэффициентов в окислительно-восстановительных реакциях

При подборе коэффициентов надо учитывать основное положение: число электронов, отданных восстановлением, равно числу электронов, полученных окислением.

После выявления окислителя, восстановителя, к соответствующему равенству реакции составляют цифровую схему перехода электронов (уравнение электронного баланса).

Пример 1. Al + Cl 2 ® AlCl 3 , гдеAl восстановитель, Cl 2 -окислитель.

Схема перехода электронов:

Al 0 - 3e - ® Al +3 3 1 окисление

Cl 0 + e - ® Cl 1 1 3 восстановление

Из данной схемы видно, что на один окисляющийся атом алюминия требуется три атома хлора, воспринимающие эти три электрона (смотри вторую графу). Следовательно, на каждый атом алюминия необходимо три атома хлора или на два атома алюминия три молекулы хлора. Получаем коэффициенты:

2Al + 3Cl 2 = AlCl 3 .

Пример 2. N 3- H 3 + O 0 2 ® N 2+ O 2- +H 2 O, где O 2 - типичный окислитель, а N 3- H 3 играет роль восстановителя.

Составляем схему (электронный баланс):

N 3- - 5e - ® N +2 5 2 4 окисление

O 0 + 2e - ® O -2 2 5 10 восстановление

На 4 атома азота требуется 10 атомов или 5 молекул кислорода. Получаем коэффициенты:

4NH 3 + 5O 2 = 4NO + 6H 2 O.

Особые случаи составления равенств окислительно-восстановительных реакций

1. Если в реакции число электронов, теряемых восстановителем, и число электронов, принимаемых окислителем, является чётными числами, то при нахождении коэффициентов число электронов делят на общий наибольший делитель.

Пример:

H 2 SO 3 + HClO 3 ® H 2 SO 4 +HCl

Восстановитель S +4 - 2е - ® S +6 6 3 окисление

окислительCl +5 + 6e - ® Cl - 2 1 восстановление

Коэффициентами у восстановителя и окислителя будут не 2 и 6, а 1и 3:

3H 2 SO 3 +3HClO 3 =3H 2 SO 4 +HCl.

Если же число электронов, теряемых восстановителем и приобретаемых окислителем, нечетно, а в результате реакции должно получиться чётное число атомов, то коэффициенты удваиваются.

Пример:

KJ - + KMn +7 O 4 + H 2 S +6 O 4 ® J o 2 + K 2 S +6 O 4 + Mn +2 SO 4 + H 2 O

Восстановитель J - -1e - ® J o 5 10 окисление

Коэффициентами у окислителя и восстановителя будут не 1 и 5, а 2 и 10:

10KJ + 2KMnO 4 + 8H 2 SO 4 = 5J 2 + 6K 2 SO 4 + 2MnSO 4 + 8H 2 O.

2. Иногда восстановитель или окислитель расходуется дополнительно на связывание образующихся в результате реакции продуктов.

Пример:

HBr - + KMn +7 O 4 + HBr ®Br 0 2 + KBr - + Mn +2 Br 2 0 + H 2 O

Восстановитель Br - - e - ® Br 0 5 10 окисление

окислитель Mn +7 + 5e - ® Mn +2 1 2 восстановление

В этой реакции десять молекул HBr реагируют как восстановители, а шесть молекул HBr необходимы для связывания получающихся веществ (солеобразование):

10HBr + 2KMnO 4 + 6HBr = 5Br 2 + 2KBr + 2MnBr 2 + 8H 2 O.

3.Окисляются одновременно и положительные и отрицательные ионы молекулы восстановителя.

Пример:

As 2 +3 S 3 -2 + HN +5 O 3 ® H 3 As +5 O 4 + H 2 S +6 O 4 + N +2 O + H 2 O

Здесь ионы As +3 окисляются в ионы As 2 +3 и одновременно ионы S -2 окисляются в ионы S +6 а анионы N +5 восстанавливаются до N +2 .

2Аs +3 - 4e - ® 2Аs +5

восстановители 3S -2 - 24e - ® 3S +6 окисление

окислитель N +5 + 3e - ® N +2 восстановление

В этой реакции на каждые три молекулы As 2 S 3 реагируют 28 молекул HNO 3 . Проверяем правильность составления равенств реакции путём подсчёта атомов водорода и кислорода в правой и левой частях. Таким образом, находим, что в реакцию вступают ещё 4 молекулы воды, которые должны быть приписаны к левой части равенства для окончательной его записи:

3As 2 S 3 + 28HNO 3 + 4H 2 O = 6H 3 AsO 4 + 9H 2 SO 4 + 28NO

2As +3 –4e®2As +5 4

3S -2 –24e®3S + 24

Восстановители 2As +3 + 3S -2 - 28e - ®2As +5 + 3S +6 3 окисление

окислитель N +5 + 3e - ®N +2 28 восстановление

4. Восстановителем и окислителем являются ионы одного и того же элемента, но входящие в состав различных веществ.

Пример:

KJ - + KJ +5 O 3 + H 2 SO 4 ® J 0 2 + K 2 SO 4 + H 2 O

Восстановитель J - - е - ® J 0 5 окисление

окислитель J +5 + 5e - ®J 0 1 восстановление

5KJ + KJO 3 + 3H 2 SO 4 = 3J 2 + 3K 2 SO 4 + 3H 2 O.

5.Восстановителем и окислителем являются ионы одного и того же элемента, входящие в состав одного вещества (самоокисление -самовосстановление).

Пример:

HN +3 O 2 ® HN +5 O 3 + N +2 O + H 2 O

Восстановитель N +3 - 2e - ® N +5 1 окисление

окислитель N +3 + e - ® N +2 2 восстановление

Следовательно, равенство реакции